login
A303601
Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + Bell(k) + Bell(m) with 0 <= a <= b and 0 < k <= m, where Bell(k) denotes the k-th Bell number A000110(k).
20
0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 4, 5, 7, 5, 4, 7, 7, 7, 8, 8, 5, 9, 10, 7, 6, 9, 8, 8, 6, 7, 10, 10, 9, 8, 7, 8, 9, 10, 6, 9, 11, 7, 6, 8, 9, 10, 7, 10, 8, 7, 8, 10, 10, 9, 10, 8, 9, 13, 14, 10, 11, 12, 12, 9, 9, 12, 11, 13, 11, 9
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be expressed as the sum of two triangular numbers and two Bell numbers.
This has been verified for all n = 2..7*10^8. Note that 111277 cannot be written as the sum of two squares and two Bell numbers.
As log(Bell(n)) is asymptotically equivalent to n*log(n), Bell numbers eventually grow faster than any exponential function.
See also A303389, A303540, A303543 and A303637 for similar conjectures.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
EXAMPLE
a(2) = 1 with 2 = 0*(0+1)/2 + 0*(0+1)/2 + Bell(1) + Bell(1).
a(3) = 2 with 3 = 0*(0+1)/2 + 1*(1+1)/2 + Bell(1) + Bell(1) = 0*(0+1)/2 + 0*(0+1)/2 + Bell(1) + Bell(2).
MATHEMATICA
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
b[n_]:=b[n]=BellB[n];
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; k=1; Label[bb]; If[b[k]>n, Goto[aa]]; Do[If[QQ[4(n-b[k]-b[j])+1], Do[If[TQ[n-b[k]-b[j]-x(x+1)/2], r=r+1], {x, 0, (Sqrt[4(n-b[k]-b[j])+1]-1)/2}]], {j, 1, k}]; k=k+1; Goto[bb]; Label[aa];
tab=Append[tab, r], {n, 1, 70}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 26 2018
STATUS
approved