login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303543
Number of ways to write n as a^2 + b^2 + C(k) + C(m) with 0 <= a <= b and 0 < k <= m, where C(k) denotes the Catalan number binomial(2k,k)/(k+1).
22
0, 1, 2, 3, 2, 3, 4, 4, 2, 3, 5, 5, 2, 3, 5, 5, 4, 3, 6, 8, 4, 3, 6, 6, 3, 3, 5, 7, 6, 3, 4, 8, 5, 2, 6, 7, 3, 4, 5, 5, 6, 4, 5, 10, 6, 4, 7, 8, 4, 2, 7, 9, 9, 5, 7, 11, 8, 2, 5, 11, 5, 4, 4, 8, 8, 4, 6, 11, 10, 3, 6, 8, 5, 5, 6, 7, 6, 6, 5, 9
OFFSET
1,3
COMMENTS
Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two squares and two Catalan numbers.
This is similar to the author's conjecture in A303540. It has been verified that a(n) > 0 for all n = 2..10^9.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(2) = 1 with 2 = 0^2 + 0^2 + C(1) + C(1).
a(3) = 2 with 3 = 0^2 + 1^2 + C(1) + C(1) = 0^2 + 0^2 + C(1) + C(2).
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
c[n_]:=c[n]=Binomial[2n, n]/(n+1);
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; k=1; Label[bb]; If[c[k]>n, Goto[aa]]; Do[If[QQ[n-c[k]-c[j]], Do[If[SQ[n-c[k]-c[j]-x^2], r=r+1], {x, 0, Sqrt[(n-c[k]-c[j])/2]}]], {j, 1, k}]; k=k+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 25 2018
STATUS
approved