login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109083
Convolution of A002324 and A010815.
2
1, -1, 0, 0, -2, 0, 2, 0, 0, 0, 0, 3, 0, 0, -3, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,5
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: A(x) = Sum_{n>=1} (-1)^(n-1)*n*[x^(n*(3*n-1)/2) - x^(n*(3*n+1)/2)] = x - x^2 - 2*x^5 + 2*x^7 + 3*x^12 - 3*x^15 - 4*x^22 + 4*x^26 + 5*x^35 - 5*x^40 - 6*x^51 + 6*x^57 +...
Expansion of f(-q)* (g(q)-1)/6 in powers of q where f(-q) = g.f. of A010815, g(q) = g.f. of A004016.
Expansion of (f(-q)/ f(-q^3))*(f(-q)^3 -f(-q^3) +9*q*f(-q^9)^3)/6 in powers of q where f() is a Ramanujan theta function. - Michael Somos, Jun 11 2006
EXAMPLE
G.f. satisfies 6*A(x^3) = eta(x)^3 - eta(x^3) + 3*x*eta(x^9)^3, where eta(x) = 1 + Sum_{n>=1} (-1)^n*[x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2)] = 1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 +... and eta(x)^3 = 1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 +... + (-1)^n*(2*n+1)*x^(n*(n+1)/2) + ... is the Jacobi triple product identity.
MATHEMATICA
a:= CoefficientList[Series[Sum[(-1)^(n-1)*n*(x^(n*(3*n - 1)/2) - x^(n*(3*n + 1)/2)), {n, 1, 50}], {x, 0, 50}], x]; Drop[Table[a[[n]], {n, 1, 50}], 1] (* G. C. Greubel, May 09 2018 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^(3*n))); polcoeff((eta(X)^3-eta(X^3)+3*x*eta(X^9)^3)/6, 3*n)}
(PARI) {a(n)= local(A); if(n<1, 0, A=x*O(x^n); polcoeff( eta(x+A)/ eta(x^3+A)* (eta(x+A)^3 -eta(x^3+A) +9*x* eta(x^9+A)^3)/6, n))} /* Michael Somos, Jun 11 2006 */
CROSSREFS
Sequence in context: A358061 A342121 A258764 * A256812 A292251 A231715
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 18 2005
STATUS
approved