login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution of A002324 and A010815.
2

%I #16 Mar 12 2021 22:24:43

%S 1,-1,0,0,-2,0,2,0,0,0,0,3,0,0,-3,0,0,0,0,0,0,-4,0,0,0,4,0,0,0,0,0,0,

%T 0,0,5,0,0,0,0,-5,0,0,0,0,0,0,0,0,0,0,-6,0,0,0,0,0,6,0,0,0,0,0,0,0,0,

%U 0,0,0,0,7,0,0,0,0,0,0,-7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0

%N Convolution of A002324 and A010815.

%C Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

%H G. C. Greubel, <a href="/A109083/b109083.txt">Table of n, a(n) for n = 1..950</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F G.f.: A(x) = Sum_{n>=1} (-1)^(n-1)*n*[x^(n*(3*n-1)/2) - x^(n*(3*n+1)/2)] = x - x^2 - 2*x^5 + 2*x^7 + 3*x^12 - 3*x^15 - 4*x^22 + 4*x^26 + 5*x^35 - 5*x^40 - 6*x^51 + 6*x^57 +...

%F Expansion of f(-q)* (g(q)-1)/6 in powers of q where f(-q) = g.f. of A010815, g(q) = g.f. of A004016.

%F Expansion of (f(-q)/ f(-q^3))*(f(-q)^3 -f(-q^3) +9*q*f(-q^9)^3)/6 in powers of q where f() is a Ramanujan theta function. - _Michael Somos_, Jun 11 2006

%e G.f. satisfies 6*A(x^3) = eta(x)^3 - eta(x^3) + 3*x*eta(x^9)^3, where eta(x) = 1 + Sum_{n>=1} (-1)^n*[x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2)] = 1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 +... and eta(x)^3 = 1 - 3*x + 5*x^3 - 7*x^6 + 9*x^10 +... + (-1)^n*(2*n+1)*x^(n*(n+1)/2) + ... is the Jacobi triple product identity.

%t a:= CoefficientList[Series[Sum[(-1)^(n-1)*n*(x^(n*(3*n - 1)/2) - x^(n*(3*n + 1)/2)), {n,1,50}], {x,0,50}], x]; Drop[Table[a[[n]], {n, 1, 50}], 1] (* _G. C. Greubel_, May 09 2018 *)

%o (PARI) {a(n)=local(X=x+x*O(x^(3*n))); polcoeff((eta(X)^3-eta(X^3)+3*x*eta(X^9)^3)/6,3*n)}

%o (PARI) {a(n)= local(A); if(n<1, 0, A=x*O(x^n); polcoeff( eta(x+A)/ eta(x^3+A)* (eta(x+A)^3 -eta(x^3+A) +9*x* eta(x^9+A)^3)/6, n))} /* _Michael Somos_, Jun 11 2006 */

%K sign

%O 1,5

%A _Paul D. Hanna_, Jun 18 2005