login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358061
a(n) = phi(n) mod tau(n).
1
0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 4, 0, 2, 0, 3, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 3, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 6, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 2, 0, 4, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0
OFFSET
1,4
COMMENTS
a(n) > 0 for n in A015733, a(n) = 0 for n in A020491.
FORMULA
a(n) = A000010(n) mod A000005(n).
EXAMPLE
For n = 4; a(4) = A000010(4) mod A000005(4) = 2 mod 3 = 2.
MATHEMATICA
a[n_] := Mod[EulerPhi[n], DivisorSigma[0, n]]; Array[a, 100] (* Amiram Eldar, Oct 28 2022 *)
PROG
(Python)
from math import prod
from sympy import factorint
def A358061(n):
f = factorint(n).items()
d = prod(e+1 for p, e in f)
return prod(pow(p, e-1, d)*((p-1)%d) for p, e in f) % d # Chai Wah Wu, Oct 29 2022
CROSSREFS
Cf. A000005 (tau), A000010 (phi), A015733, A020491.
Sequence in context: A331292 A331293 A335379 * A342121 A258764 A109083
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Oct 28 2022
STATUS
approved