login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358062
a(n) is the diagonal domination number for the queen graph on an n X n chessboard.
0
1, 1, 1, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 43, 44, 45, 46, 47, 47, 48
OFFSET
1,4
COMMENTS
a(n) is the smallest number of queens that can be placed on the diagonal of an n X n chessboard attacking all the cells on the chessboard. For large n the diagonal domination number exceeds the domination number.
The diagonal dominating set can be described by the set X of the x-coordinates of all the queens. Cockayne and Hedetniemi showed that for n greater than 1, set X has to be the complement to a midpoint-free even-sum set. Here midpoint-free means that the set doesn't contain an average of any two of its elements. Even-sum means that each sum of a pair of elements is even. Thus the problem of finding the diagonal domination number is equivalent to finding a largest midpoint-free even-sum set in the range 1-n.
LINKS
Irene Choi, Shreyas Ekanathan, Aidan Gao, Tanya Khovanova, Sylvia Zia Lee, Rajarshi Mandal, Vaibhav Rastogi, Daniel Sheffield, Michael Yang, Angela Zhao, and Corey Zhao, The Struggles of Chessland, arXiv:2212.01468 [math.HO], 2022.
E. J. Cockayne and S. T. Hedetniemi, On the diagonal queens domination problem, J. Combin. Theory Ser. A, 42, (1986), 137-139.
FORMULA
For n > 1, a(n) = A003002(floor((n+1)/2)).
EXAMPLE
Consider a 9 X 9 chessboard. The largest midpoint-free even-sum set has size 4. For example: 1, 3, 7, and 9 form such a subset. Thus, the queen's position diagonal domination number is 5 and queens can be placed on the diagonal in rows 2, 4, 5, 6, and 8 to dominate the board.
CROSSREFS
Cf. A003002.
Sequence in context: A071991 A276952 A096336 * A081609 A337020 A351519
KEYWORD
nonn
AUTHOR
Tanya Khovanova and PRIMES STEP junior group, Oct 28 2022
STATUS
approved