

A005518


Largest label f(T) given to a rooted tree T with n nodes in MatulaGoebel labeling.
(Formerly M1154)


13



1, 2, 4, 8, 19, 67, 331, 2221, 19577, 219613, 3042161, 50728129, 997525853, 22742734291, 592821132889, 17461204521323, 575411103069067, 21034688742654437, 846729487306354343
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Let prime(1)=2, ... denote the primes. The label f(T) for a rooted tree T is 1 if T has 1 node, otherwise f(T) = Product prime(f(T_i)) where the T_i are the subtrees obtained by deleting the root and the edges adjacent to it.


REFERENCES

I. Gutman and A. Ivic, Graphs with maximal and minimal Matula numbers, Bulletin CVII Acad. Serbe, Sciences Math., 107, No. 19, 1994, 6574.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..19.
F. Goebel, On a 11correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131142.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
Index entries for sequences related to MatulaGoebel numbers
Index entries for sequences related to rooted trees
Index entries for sequences related to trees


FORMULA

a(1)=1; a(2)=2; a(3)=4; a(4)=8; a(n) = the a(n1)th prime (see the Gutman and Ivic 1994 paper).  Emeric Deutsch, Apr 15 2012
Under plausible assumptions about the growth of the primes, for n >= 4, a(n+1) = a(n)th prime and A005518(n) = A057452(n3).  David W. Wilson, Jul 09 2001
A091233(n) = (a(n)A005517(n))+1.  Antti Karttunen, May 24 2004


MAPLE

with(numtheory): a := proc (n) if n = 1 then 1 elif n = 2 then 2 elif n = 3 then 4 elif n = 4 then 8 else ithprime(a(n1)) end if end proc: seq(a(n), n = 1 .. 12); # Emeric Deutsch, Apr 15 2012


MATHEMATICA

a[n_] := a[n] = Switch[n, 1, 1, 2, 2, 3, 4, 4, 8, _, Prime[a[n1]]]; Table[a[n], {n, 1, 16}] (* JeanFrançois Alcover, Mar 06 2014, after Emeric Deutsch *)


CROSSREFS

Apart from initial terms, same as A057452.
Cf. A061773. See A005517 for the smallest value of f(T).
Sequence in context: A006897 A287025 A034767 * A326997 A014225 A217520
Adjacent sequences: A005515 A005516 A005517 * A005519 A005520 A005521


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from David W. Wilson, Jul 09 2001
a(17)a(19) from Robert G. Wilson v, Mar 07 2017 using Kim Walisch's primecount


STATUS

approved



