The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093566 a(n) = n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48. 15
 0, 0, 0, 0, 1, 20, 120, 455, 1330, 3276, 7140, 14190, 26235, 45760, 76076, 121485, 187460, 280840, 410040, 585276, 818805, 1125180, 1521520, 2027795, 2667126, 3466100, 4455100, 5668650, 7145775, 8930376, 11071620, 13624345, 16649480, 20214480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS a(n+1) is the number of chiral pairs of colorings of the faces of a cube (vertices of a regular octahedron) using n or fewer colors. - Robert A. Russell, Sep 28 2020 LINKS Solomon W. Golomb, Iterated binomial coefficients, Amer. Math. Monthly, 87 (1980), 719-727. Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1). FORMULA a(n) = binomial(binomial(n-1, 2), 3). G.f.: -x^4*(1+13*x+x^2)/(x-1)^7. - R. J. Mathar, Dec 08 2010 a(n+1) = 1*C(n,3) + 16*C(n,4) + 30*C(n,5) + 15*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors. - Robert A. Russell, Sep 28 2020 EXAMPLE For a(3+1) = 1, each of the three colors is applied to a pair of adjacent faces of the cube (vertices of the octahedron). - Robert A. Russell, Sep 28 2020 MATHEMATICA Table[ Binomial[ Binomial[n-1, 2], 3], {n, 0, 32}] LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 0, 1, 20, 120}, 40] (* Harvey P. Dale, Feb 18 2016 *) PROG (Sage) [(binomial(binomial(n, 2), 3)) for n in range(-1, 33)] # Zerinvary Lajos, Nov 30 2009 (PARI) a(n)=n*(n-1)*(n-2)*(n-3)*(n^2-3*n-2)/48 \\ Charles R Greathouse IV, Jun 11 2015 CROSSREFS From Robert A. Russell, Sep 28 2020: (Start) Cf. A047780 (oriented), A198833 (unoriented), A337898 (achiral) colorings. a(n+1) = A325006(3,n) (chiral pairs of colorings of orthotope facets or orthoplex vertices. a(n+1) = A337889(3,n) (chiral pairs of colorings of orthotope faces or orthoplex peaks). Other polyhedra: A000332 (tetrahedron), A337896 (cube/octahedron). (End) Sequence in context: A044352 A044733 A280439 * A213223 A041770 A156255 Adjacent sequences:  A093563 A093564 A093565 * A093567 A093568 A093569 KEYWORD nonn,easy AUTHOR Robert G. Wilson v and Santi Spadaro, Mar 31 2004 EXTENSIONS Edited (with a new definition) by N. J. A. Sloane, Jul 02 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 01:10 EST 2020. Contains 338670 sequences. (Running on oeis4.)