login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337889 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the square faces of a regular n-dimensional orthotope (hypercube) using k or fewer colors. 7
0, 0, 0, 0, 0, 0, 0, 1, 40927, 0, 0, 20, 731279799, 314824333015938998688, 0, 0, 120, 732272925320, 38491882659300767730994725249684096, 38343035259947576596859560773963975000551460473665493534170658111488, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,9

COMMENTS

Each member of a chiral pair is a reflection, but not a rotation, of the other. Each face is a square bounded by four edges. For n=2, the figure is a square with one face. For n=3, the figure is a cube with 6 faces. For n=4, the figure is a tesseract with 24 faces. The number of faces is 2^(n-2)*C(n,2).

Also the number of chiral pairs of colorings of peaks of an n-dimensional orthoplex. A peak is an (n-3)-dimensional simplex.

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

LINKS

Table of n, a(n) for n=2..22.

K. Balasubramanian, Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications, J. Math. Sci. & Mod. 1 (2018), 158-180.

FORMULA

T(n,k) = A337887(n,k) - A337888(n,k) = (A337887(n,k) - A337890(n,k)) / 2 = A337888(n,k) - A337890(n,k).

EXAMPLE

Array begins with T(2,1):

0     0         0            0               0                 0 ...

0     0         1           20             120               455 ...

0 40927 731279799 732272925320 155180061396500 12338466190481025 ...

MATHEMATICA

m=2; (* dimension of color element, here a square face *)

Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1+2x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n-m]];

FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);

CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 1, -1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);

PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);

pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)

row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]

array[n_, k_] := row[n] /. b -> k

Table[array[n, d+m-n], {d, 6}, {n, m, d+m-1}] // Flatten

CROSSREFS

Cf. A337887 (oriented), A337888 (unoriented), A337890 (achiral).

Other elements: A325014 (vertices), A337409 (edges).

Other polytopes: A337885 (simplex), A337893 (orthoplex).

Rows 2-4 are A000004, A093566(n+1), A331356.

Sequence in context: A232301 A212080 A097479 * A331356 A249527 A133863

Adjacent sequences:  A337886 A337887 A337888 * A337890 A337891 A337892

KEYWORD

tabl,nonn

AUTHOR

Robert A. Russell, Sep 28 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 05:19 EST 2022. Contains 350481 sequences. (Running on oeis4.)