login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337893 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the faces of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors. 6
0, 0, 0, 0, 1, 0, 0, 66, 11158298, 0, 0, 920, 4825452718593, 314824333015938998688, 0, 0, 6350, 48038354542204960, 38491882659300767730994725249684096, 31716615393292685397985382790580028572676096, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,8

COMMENTS

Each member of a chiral pair is a reflection, but not a rotation, of the other. For n=2, the figure is a square with one square face. For n=3, the figure is an octahedron with 8 triangular faces. For higher n, the number of triangular faces is 8*C(n,3).

Also the number of chiral pairs of colorings of the peaks of an n-dimensional orthotope (hypercube). A peak is an (n-3)-dimensional orthotope.

LINKS

Table of n, a(n) for n=2..22.

K. Balasubramanian, Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications, J. Math. Sci. & Mod. 1 (2018), 158-180.

FORMULA

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

T(n,k) = A337891(n,k) - A337892(n,k) = (A337891(n,k) - A337894(n,k)) / 2 = A337892(n,k) - A337894(n,k).

EXAMPLE

Table begins with T(2,1):

0 0 0 0 0 ...

0 1 66 920 6350 ...

0 11158298 4825452718593 48038354542204960 60632976384183154375 ...

MATHEMATICA

m=2; (* dimension of color element, here a face *)

Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];

FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);

CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 1, -1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);

PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);

pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)

row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]

array[n_, k_] := row[n] /. b -> k

Table[array[n, d+m-n], {d, 6}, {n, m, d+m-1}] // Flatten

CROSSREFS

Cf. A337891 (oriented), A337892 (unoriented), A337894 (achiral).

Other elements: A325006 (vertices), A337413 (edges).

Other polytopes: A337885 (simplex), A337889 (orthotope).

Rows 2-4 are A000004, A337896, A331360.

Sequence in context: A110150 A295790 A246241 * A008991 A051323 A112506

Adjacent sequences: A337890 A337891 A337892 * A337894 A337895 A337896

KEYWORD

nonn,tabl

AUTHOR

Robert A. Russell, Sep 28 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)