The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors. 12
 0, 1, 0, 3, 0, 0, 6, 3, 0, 0, 10, 15, 1, 0, 0, 15, 45, 20, 0, 0, 0, 21, 105, 120, 15, 0, 0, 0, 28, 210, 455, 210, 6, 0, 0, 0, 36, 378, 1330, 1365, 252, 1, 0, 0, 0, 45, 630, 3276, 5985, 3003, 210, 0, 0, 0, 0, 55, 990, 7140, 20475, 20349, 5005, 120, 0, 0, 0, 0, 66, 1485, 14190, 58905, 98280, 54264, 6435, 45, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other. Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using up to k colors. LINKS Robert A. Russell, Table of n, a(n) for n = 1..325 Robin Chapman, answer to Coloring the faces of a hypercube, Math StackExchange, September 30, 2010. FORMULA A(n,k) = binomial(binomial(k,2),n). A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j). A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k). G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1). Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j). G.f. for column k: (1+x)^binomial(k,2) - 1. EXAMPLE Array begins with A(1,1): 0 1 3  6  10   15     21       28        36         45          55 ... 0 0 3 15  45  105    210      378       630        990        1485 ... 0 0 1 20 120  455   1330     3276      7140      14190       26235 ... 0 0 0 15 210 1365   5985    20475     58905     148995      341055 ... 0 0 0  6 252 3003  20349    98280    376992    1221759     3478761 ... 0 0 0  1 210 5005  54264   376740   1947792    8145060    28989675 ... 0 0 0  0 120 6435 116280  1184040   8347680   45379620   202927725 ... 0 0 0  0  45 6435 203490  3108105  30260340  215553195  1217566350 ... 0 0 0  0  10 5005 293930  6906900  94143280  886163135  6358402050 ... 0 0 0  0   1 3003 352716 13123110 254186856 3190187286 29248649430 ... For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors. MATHEMATICA Table[Binomial[Binomial[d-n+1, 2], n], {d, 1, 12}, {n, 1, d}] // Flatten PROG (PARI) a(n, k) = binomial(binomial(k, 2), n) array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print("")) /* Print initial 10 rows and 11 columns of array as follows: */ array(10, 11) \\ Felix Fröhlich, May 30 2019 CROSSREFS Cf. A325004 (oriented), A325005 (unoriented), A325007 (achiral), A325010 (exactly k colors) Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325014 (orthoplex) Rows 1-3 are A161680, A050534, A093566(n+1), A234249(n-1) Sequence in context: A220692 A048962 A135028 * A325014 A343992 A275689 Adjacent sequences:  A325003 A325004 A325005 * A325007 A325008 A325009 KEYWORD nonn,tabl,easy AUTHOR Robert A. Russell, May 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 14:40 EDT 2021. Contains 347618 sequences. (Running on oeis4.)