

A275689


Decimal expansion of 3*Zeta(3)/(4*log(2)).


1



1, 3, 0, 0, 6, 5, 1, 1, 4, 9, 7, 9, 1, 0, 1, 8, 7, 0, 3, 3, 2, 3, 8, 6, 3, 9, 5, 8, 2, 6, 0, 3, 5, 6, 5, 3, 9, 9, 7, 5, 3, 8, 2, 3, 7, 3, 3, 8, 0, 6, 1, 9, 1, 3, 6, 3, 5, 1, 2, 2, 6, 2, 5, 3, 2, 4, 8, 9, 8, 9, 5, 2, 5, 4, 3, 9, 4, 6, 2, 0, 7, 7, 6, 4, 7, 2, 9, 1, 6, 8, 3, 6, 3, 4, 6, 9, 3, 6, 8, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

As it appears that the Sum {n>=1} (1)^(n+1)/n^2 / Sum {n>=1} ((1)^(n+1))/n^1 is the inverse of Levy's constant, or more traditionally the log of Levy's constant (A100199), this sequence which is equal to Sum {n>=1} (1)^(n+1)/n^3 / Sum {n>=1} ((1)^(n+1))/n^1 may be the inverse of the log of another constant with similar properties.


LINKS

Table of n, a(n) for n=1..100.


FORMULA

3*Zeta(3)/4*log(2) = A197070 / A002162 = Sum {n>=1} (1)^(n+1)/n^3 / Sum {n>=1} ((1)^(n+1))/n^1


EXAMPLE

3*Zeta(3)/(4*log(2)) = 1.300651149791018703323...


PROG

(PARI) 3*zeta(3)/log(16) \\ Charles R Greathouse IV, Aug 05 2016
(PARI) sumalt(n=1, (1)^n/n^3)/sumalt(n=1, (1)^n/n) \\ Charles R Greathouse IV, Aug 05 2016


CROSSREFS

Cf. A197070, A002162, A100199.
Sequence in context: A325006 A325014 A343992 * A322015 A285311 A285131
Adjacent sequences: A275686 A275687 A275688 * A275690 A275691 A275692


KEYWORD

nonn,cons


AUTHOR

Terry D. Grant, Aug 05 2016


STATUS

approved



