login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275691
G.f. A(x) satisfies: 1 = ...(((((A(x) - x^2)^(1/2) - x^3)^(1/2) - x^4)^(1/2) - x^5)^(1/2) - x^6)^(1/2) -...- x^n)^(1/2) -..., an infinite series of nested square roots.
2
1, 0, 1, 2, 4, 8, 17, 36, 78, 168, 364, 786, 1700, 3668, 7916, 17056, 36729, 78996, 169772, 364472, 781814, 1675464, 3587660, 7675722, 16409240, 35052552, 74822496, 159599700, 340199178, 724675528, 1542673868, 3281957116, 6977971852, 14827596904, 31489490296, 66837617960, 141789447876, 300636048724, 637116434912, 1349532001896, 2857195771769, 6046370298448
OFFSET
0,4
COMMENTS
Compare definition with that of A274965.
FORMULA
G.f.: A(x) = G(x,x), where G(x,y) = x*y + G(x,x*y)^2 is the g.f. of A275670.
G.f.: A(x) = sqrt(F(x) - x), where F(x) is the g.f. of A274965.
EXAMPLE
G.f.: A(x) = 1 + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 17*x^6 + 36*x^7 + 78*x^8 + 168*x^9 + 364*x^10 + 786*x^11 + 1700*x^12 + 3668*x^13 + 7916*x^14 +...
The g.f. of related sequence A274965 begins:
A(x)^2 + x = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 46*x^6 + 104*x^7 + 238*x^8 + 540*x^9 + 1228*x^10 + 2780*x^11 + 6289*x^12 +...
PROG
(PARI) {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^2 + x^(n+2-k)); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Cf. A274965.
Antidiagonal sums of triangle A275670.
Sequence in context: A063457 A262735 A190162 * A251691 A157904 A182901
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 05 2016
STATUS
approved