login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190162
Number of peakless Motzkin paths of length n containing no subwords of type dh^ju (j>=1), where u=(1,1), h=(1,0), and d=(1,-1) (can be easily expressed using RNA secondary structure terminology).
1
1, 1, 1, 2, 4, 8, 17, 36, 77, 167, 365, 805, 1790, 4008, 9033, 20477, 46663, 106843, 245691, 567194, 1314086, 3054442, 7120951, 16647056, 39015476, 91654385, 215780420, 509033640, 1203085539, 2848445175, 6755095119, 16044373511, 38162885226, 90897048648
OFFSET
0,4
COMMENTS
a(n)=A098083(n,0).
FORMULA
G.f.: G=G(z) satisfies the equation G=1+zG+z^2*(G-1)[(1-z)G+z/(1-z)].
D-finite with recurrence (n+2)*a(n) +5*(-n-1)*a(n-1) +2*(4*n+1)*a(n-2) +(-6*n+5)*a(n-3) +(8*n-27)*a(n-4) +2*(-7*n+31)*a(n-5) +(13*n-71)*a(n-6) +(-7*n+47)*a(n-7) +(3*n-25)*a(n-8) +(-n+9)*a(n-9)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(7)=36 because among the 37 (=A004148(7)) peakless Motzkin paths of length 7 only uh(dhu)hd has a subword of the forbidden type (shown between parentheses).
MAPLE
eq := G = 1+z*G+z^2*(G-1)*((1-z)*G+z/(1-z)): G := RootOf(eq, G): Gser := series(G, z=0, 38): seq(coeff(Gser, z, n), n = 0 .. 33);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 05 2011
STATUS
approved