OFFSET
0,4
COMMENTS
a(n)=A097100(n,0). F% G.f.: G=G(z) satisfies the equation G=1+zG+z^2*G[z+(1-z)^2*(G-zG-1)]/(1-z).
FORMULA
Conjecture D-finite with recurrence (n+2)*a(n) +(-5*n-6)*a(n-1) +2*(4*n+3)*a(n-2) +(-2*n-9)*a(n-3) +(-8*n+25)*a(n-4) +6*(n-2)*a(n-
5) +9*(n-7)*a(n-6) +3*(-5*n+32)*a(n-7) +7*(n-7)*a(n-8) +(-n+8)*a(n-9)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(6)=15 because among the 17 (=A004148(6)) peakless Motzkin paths of length 6 only (uhu)hdd and uuh(dhd) have subwords of the forbidden type (shown between parentheses).
MAPLE
eq := G = 1+z*G+z^2*G*(z+(1-z)^2*(G-z*G-1))/(1-z): G := RootOf(eq, G): Gser := series(G, z = 0, 38): seq(coeff(Gser, z, n), n = 0 .. 35);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 05 2011
STATUS
approved