login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332052
Number of binary words of length n with an even number of occurrences of the subword 0101.
3
1, 2, 4, 8, 15, 28, 54, 104, 198, 380, 736, 1424, 2756, 5360, 10456, 20416, 39944, 78352, 153952, 302912, 596976, 1178304, 2328544, 4606848, 9124448, 18089920, 35895552, 71283968, 141664832, 281718528, 560561024, 1115994112, 2222846080, 4429381888, 8829667840
OFFSET
0,2
FORMULA
G.f.: (x^4-4*x^3+2*x^2-2*x+1)/((1-2*x)*(2*x^4-4*x^3+2*x^2-2*x+1)).
a(n) = Sum_{k>=0} A118869(n,2*k).
EXAMPLE
a(4) = 15 = 2^4 - 1: 0101 is not counted.
a(5) = 28 = 2^5 - 4: 00101, 10101, 01010, 01011 are not counted.
MAPLE
a:= n-> 2^n-(<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>
, <0|0|0|0|1>, <4|-10|8|-6|4>>^n)[1, 5]:
seq(a(n), n=0..39);
MATHEMATICA
LinearRecurrence[{4, -6, 8, -10, 4}, {1, 2, 4, 8, 15}, 50] (* Harvey P. Dale, Mar 07 2024 *)
CROSSREFS
Sequence in context: A118870 A171857 A190160 * A088532 A271364 A036621
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Feb 06 2020
STATUS
approved