login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A332050
Number of ways to arrange Palago tiles in a triangle of side length n, up to rotation, reflection, and swapping colors.
1
1, 1, 7, 129, 9882, 2391930, 1743402771, 3812799008214, 25015772571200361, 492385451093553791610, 29074868501520453489499806, 5150525730438768829942800034449, 2737200544710109691113626131721984885, 4363981784043856212945753449232929426200329
OFFSET
0,3
COMMENTS
A Palago tile is a hexagonal tile with four regions of alternating colors. See links for illustrations.
LINKS
FORMULA
a(n) = (3^A000217(n) + 3*3^A002620(n) + 2*3^A007997(n+4))/6 if n = 1 (mod 3), and
a(n) = (3^A000217(n) + 3*3^A002620(n))/6 otherwise.
MATHEMATICA
a[n_] = (3^Binomial[n + 1, 2] +
3*3^((Binomial[n + 1, 2] - Ceiling[n/2])/2) +
If[Mod[n, 3] == 1, 0, 2*3^(Binomial[n + 1, 2]/3)])/6
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Feb 06 2020
STATUS
approved