OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..394
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..n-1} (-1)^(n - k) * binomial(n - 1, j) * Stirling1(j + 1, k) * n^(n + k - j - 1) for n > 0.
a(n) ~ phi^(3*n + 1/2) * n^n / (5^(1/4) * exp(n + n/phi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Feb 07 2020
MATHEMATICA
Table[n! SeriesCoefficient[1/(1 - LambertW[x])^n, {x, 0, n}], {n, 0, 20}]
Join[{1}, Table[Sum[Sum[(-1)^(n - k) Binomial[n - 1, j] StirlingS1[j + 1, k] n^(n + k - j - 1), {j, 0, n - 1}], {k, 0, n}], {n, 1, 20}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 06 2020
STATUS
approved