login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332048
a(n) = n! * [x^n] 1 / (1 - LambertW(x))^n.
1
1, 1, 2, 15, 104, 1145, 13824, 208831, 3536000, 68918769, 1489702400, 35742514511, 937323767808, 26750313223465, 824073079660544, 27276657371589375, 965004380380626944, 36347144974616190689, 1451974448007830568960, 61319892272079181137679, 2729671240750270054400000
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..n-1} (-1)^(n - k) * binomial(n - 1, j) * Stirling1(j + 1, k) * n^(n + k - j - 1) for n > 0.
a(n) ~ phi^(3*n + 1/2) * n^n / (5^(1/4) * exp(n + n/phi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Feb 07 2020
MATHEMATICA
Table[n! SeriesCoefficient[1/(1 - LambertW[x])^n, {x, 0, n}], {n, 0, 20}]
Join[{1}, Table[Sum[Sum[(-1)^(n - k) Binomial[n - 1, j] StirlingS1[j + 1, k] n^(n + k - j - 1), {j, 0, n - 1}], {k, 0, n}], {n, 1, 20}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 06 2020
STATUS
approved