OFFSET
0,2
COMMENTS
Another interpretation of this sequence is: nonnegative integers k such that (k + 1)^2 + (2k)^2 is a perfect square. So apart from a(0) = 0, a(n) + 1 and 2a(n) form the legs of a Pythagorean triple. - Nick Hobson, Jan 13 2007
Also solution y of Diophantine equation x^2 + 4*y^2 = k^2 for which x=y+1. - Carmine Suriano, Jun 23 2010
Also the index of the first of two consecutive heptagonal numbers whose sum is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 20 2014
Nonnegative integers k such that G(x) = k for some rational number x where G(x) = x/(1-x-x^2) is the generating function of the Fibonacci numbers. - Tom Edgar, Aug 24 2015
The integer solutions of the equation a(b+1) = (a-b)(a-b-1) or, equivalently, binomial(a, b) = binomial(a-1, b+1) are given by (a, b) = (a(n+1), A003482(n)=Fibonacci(2*n) * Fibonacci(2*n+3)) (Lind and Singmaster). - Tomohiro Yamada, May 30 2018
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 28.
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Pridon Davlianidze, Problem B-1279, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 4 (2020), p. 368; An Unusual Generalization, Solution to Problem B-1279 by J. N. Senadheera, ibid., Vol. 59, No. 4 (2021), pp. 370-371.
Dae S. Hong, When is the Generating Function of the Fibonacci Numbers an Integer?, The College Mathematics Journal, Vol. 46, No. 2 (March 2015), pp. 110-112
D. A. Lind, The quadratic field Q(sqrt(5)) and a certain diophantine equation, Fibonacci Quart., Vol. 6, No. 3 (1968), pp. 86-93.
David Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quart., Vol. 13, No. 4 (1973), pp. 295-298.
Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(3) + Fibonacci(7) + Fibonacci(11) + ... + Fibonacci(4n+3).
G.f.: x*(2-x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Mar 30 2012
E.g.f.: (1/5)^(3/2)*((1+phi^2)*exp(phi^4*x) - (1 + (1/phi^2))*exp(x/phi^4) - sqrt(5)*exp(x)), where 2*phi = 1 + sqrt(5). - G. C. Greubel, Aug 24 2015
From - Michael Somos, Aug 27 2015: (Start)
a(n) = -A081016(-1-n) for all n in Z.
0 = a(n) - 7*a(n+1) + a(n+2) - 1 for all n in Z.
0 = a(n)*a(n+2) - a(n+1)^2 + a(n+1) + 2 for all n in Z.
0 = a(n)*(a(n) -7*a(n+1) -1) + a(n+1)*(a(n+1) - 1) - 2 for all n in Z. (End)
a(n) = (k(n) + sqrt(k(n)*(4 + 5*k(n))))/2, where k(n) = A049684(n). - Stefano Spezia, Mar 11 2021
Product_{n>=1} (1 + 1/a(n)) = phi (A001622) (Davlianidze, 2020). - Amiram Eldar, Nov 30 2021
EXAMPLE
G.f. = 2*x + 15*x^2 + 104*x^3 + 714*x^4 + 4895*x^5 + 33552*x^6 + ...
MAPLE
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d, `, (luc(4*n+1)-1)/5) od: # James A. Sellers, Mar 03 2003
MATHEMATICA
(LucasL[4*Range[0, 30]+1]-1)/5 (* or *) LinearRecurrence[{8, -8, 1}, {0, 2, 15}, 30] (* G. C. Greubel, Aug 24 2015, modified Jul 14 2019 *)
PROG
(PARI) concat(0, Vec(x*(2-x)/((1-x)*(1-7*x+x^2)) + O(x^30))) \\ Colin Barker, Dec 20 2014
(Magma) [(Lucas(4*n+1)-1)/5: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
(Sage) [(lucas_number2(4*n+1, 1, -1) -1)/5 for n in (0..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([0..30], n-> (Lucas(1, -1, 4*n+1)[2] -1)/5); # G. C. Greubel, Jul 14 2019
CROSSREFS
Equals A089508 + 1.
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved