login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A081018
a(n) = (Lucas(4n+1)-1)/5, or Fibonacci(2n)*Fibonacci(2n+1), or A081017(n)/5.
10
0, 2, 15, 104, 714, 4895, 33552, 229970, 1576239, 10803704, 74049690, 507544127, 3478759200, 23843770274, 163427632719, 1120149658760, 7677619978602, 52623190191455, 360684711361584, 2472169789339634, 16944503814015855, 116139356908771352, 796030994547383610
OFFSET
0,2
COMMENTS
Another interpretation of this sequence is: nonnegative integers k such that (k + 1)^2 + (2k)^2 is a perfect square. So apart from a(0) = 0, a(n) + 1 and 2a(n) form the legs of a Pythagorean triple. - Nick Hobson, Jan 13 2007
Also solution y of Diophantine equation x^2 + 4*y^2 = k^2 for which x=y+1. - Carmine Suriano, Jun 23 2010
Also the index of the first of two consecutive heptagonal numbers whose sum is equal to the sum of two consecutive triangular numbers. - Colin Barker, Dec 20 2014
Nonnegative integers k such that G(x) = k for some rational number x where G(x) = x/(1-x-x^2) is the generating function of the Fibonacci numbers. - Tom Edgar, Aug 24 2015
The integer solutions of the equation a(b+1) = (a-b)(a-b-1) or, equivalently, binomial(a, b) = binomial(a-1, b+1) are given by (a, b) = (a(n+1), A003482(n)=Fibonacci(2*n) * Fibonacci(2*n+3)) (Lind and Singmaster). - Tomohiro Yamada, May 30 2018
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 28.
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
LINKS
Pridon Davlianidze, Problem B-1279, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 4 (2020), p. 368; An Unusual Generalization, Solution to Problem B-1279 by J. N. Senadheera, ibid., Vol. 59, No. 4 (2021), pp. 370-371.
Dae S. Hong, When is the Generating Function of the Fibonacci Numbers an Integer?, The College Mathematics Journal, Vol. 46, No. 2 (March 2015), pp. 110-112
D. A. Lind, The quadratic field Q(sqrt(5)) and a certain diophantine equation, Fibonacci Quart., Vol. 6, No. 3 (1968), pp. 86-93.
David Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quart., Vol. 13, No. 4 (1973), pp. 295-298.
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(3) + Fibonacci(7) + Fibonacci(11) + ... + Fibonacci(4n+3).
G.f.: x*(2-x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Mar 30 2012
E.g.f.: (1/5)^(3/2)*((1+phi^2)*exp(phi^4*x) - (1 + (1/phi^2))*exp(x/phi^4) - sqrt(5)*exp(x)), where 2*phi = 1 + sqrt(5). - G. C. Greubel, Aug 24 2015
From - Michael Somos, Aug 27 2015: (Start)
a(n) = -A081016(-1-n) for all n in Z.
0 = a(n) - 7*a(n+1) + a(n+2) - 1 for all n in Z.
0 = a(n)*a(n+2) - a(n+1)^2 + a(n+1) + 2 for all n in Z.
0 = a(n)*(a(n) -7*a(n+1) -1) + a(n+1)*(a(n+1) - 1) - 2 for all n in Z. (End)
a(n) = (k(n) + sqrt(k(n)*(4 + 5*k(n))))/2, where k(n) = A049684(n). - Stefano Spezia, Mar 11 2021
Product_{n>=1} (1 + 1/a(n)) = phi (A001622) (Davlianidze, 2020). - Amiram Eldar, Nov 30 2021
EXAMPLE
G.f. = 2*x + 15*x^2 + 104*x^3 + 714*x^4 + 4895*x^5 + 33552*x^6 + ...
MAPLE
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d, `, (luc(4*n+1)-1)/5) od: # James A. Sellers, Mar 03 2003
MATHEMATICA
(LucasL[4*Range[0, 30]+1]-1)/5 (* or *) LinearRecurrence[{8, -8, 1}, {0, 2, 15}, 30] (* G. C. Greubel, Aug 24 2015, modified Jul 14 2019 *)
PROG
(PARI) concat(0, Vec(x*(2-x)/((1-x)*(1-7*x+x^2)) + O(x^30))) \\ Colin Barker, Dec 20 2014
(Magma) [(Lucas(4*n+1)-1)/5: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
(Sage) [(lucas_number2(4*n+1, 1, -1) -1)/5 for n in (0..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([0..30], n-> (Lucas(1, -1, 4*n+1)[2] -1)/5); # G. C. Greubel, Jul 14 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A081017.
Partial sums of A033891. Bisection of A001654 and A059840.
Equals A089508 + 1.
Sequence in context: A208347 A293045 A372264 * A006675 A215643 A332048
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved