login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081019
a(n) = Lucas(4n+3) - 1, or Lucas(2n+1)*Lucas(2n+2).
1
3, 28, 198, 1363, 9348, 64078, 439203, 3010348, 20633238, 141422323, 969323028, 6643838878, 45537549123, 312119004988, 2139295485798, 14662949395603, 100501350283428, 688846502588398, 4721424167835363, 32361122672259148
OFFSET
0,1
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (3+4*x-2*x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 22 2012
MAPLE
with(combinat): luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d, `, luc(4*n+3)-1) od: # James A. Sellers, Mar 03 2003
MATHEMATICA
LucasL[4*Range[0, 30] +3] -1 (* G. C. Greubel, Jul 14 2019 *)
LinearRecurrence[{8, -8, 1}, {3, 28, 198}, 20] (* Harvey P. Dale, Nov 17 2020 *)
PROG
(PARI) Vec((2*x^2-4*x-3)/((x-1)*(x^2-7*x+1)) + O(x^30)) \\ Michel Marcus, Dec 23 2014
(PARI) vector(30, n, n--; f=fibonacci; f(4*n+4)+f(4*n+2)-1) \\ G. C. Greubel, Jul 14 2019
(Magma) [Lucas(4*n+3)-1: n in [0..30]]; // G. C. Greubel, Jul 14 2019
(Sage) [lucas_number2(4*n+3, 1, -1)-1 for n in (0..30)] # G. C. Greubel, Jul 14 2019
(GAP) List([0..30], n-> Lucas(1, -1, 4*n+3)[2] -1); # G. C. Greubel, Jul 14 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Sequence in context: A285365 A366689 A160872 * A241455 A356975 A278183
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved