The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081022 Even order Taylor coefficients at x = 0 of exp( -(-2^(1/3)+(-3*x^2+2)^(1/3))/(-3*x^2+2)^(1/3) ), odd order coefficients being equal to zero. 0
 1, 15, 615, 48825, 6351345, 1225996695, 328803049575, 116905182419025, 53200767201206625, 30152208510970120575, 20822956658564943457575, 17211467743309469796791625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA In Maple notation: a(n)=subs(x=0, diff(exp(-(-2^(1/3)+(-3*x^2+2)^(1/3))/(-3*x^2+2)^(1/3)), x\$2*n)), n=1, 2... CROSSREFS Cf. A081020, A081021. Sequence in context: A027505 A012210 A203172 * A049291 A092958 A222268 Adjacent sequences:  A081019 A081020 A081021 * A081023 A081024 A081025 KEYWORD nonn AUTHOR Karol A. Penson, Mar 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 04:45 EDT 2021. Contains 347652 sequences. (Running on oeis4.)