login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089508
Solution to a binomial problem together with companion sequence A081016(n-1).
8
1, 14, 103, 713, 4894, 33551, 229969, 1576238, 10803703, 74049689, 507544126, 3478759199, 23843770273, 163427632718, 1120149658759, 7677619978601, 52623190191454, 360684711361583, 2472169789339633, 16944503814015854
OFFSET
1,2
COMMENTS
a(n) and b(n) := A081016(n-1) are the solutions to the Diophantine equation binomial(a,b) = binomial(a+1,b-1). The first few binomials are given by A090162(n).
REFERENCES
A. I. Shirshov: On the equation binomial(n,m)=binomial(n+1,m-1), pp. 83-86, in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am.Math.Soc., 1999.
FORMULA
G.f.: x*(1+6*x-x^2)/((1-x)*(1-7*x+x^2)).
a(n) = A081018(n) - 1 = F(2*n)*F(2*n+1) - 1, n>=1; with F(n) := A000045(n) (Fibonacci).
EXAMPLE
n = 2: a(2) = 14, b(2) = A081016(1) = 6 satisfy binomial(14,6) = 3003 = binomial(15,5). 3003 = A090162(2).
MATHEMATICA
Rest[CoefficientList[Series[x*(1 + 6*x - x^2)/((1 - x)*(1 - 7*x + x^2)), {x, 0, 50}], x]] (* G. C. Greubel, Dec 18 2017 *)
PROG
(PARI) x='x+O('x^30); Vec(x*(1 + 6*x - x^2)/((1 - x)*(1 - 7*x + x^2))) \\ G. C. Greubel, Dec 18 2017
(Magma) [Fibonacci(2*n)*Fibonacci(2*n+1) - 1: n in [1..30]]; // G. C. Greubel, Dec 18 2017
CROSSREFS
Equals A081018 - 1.
Sequence in context: A005757 A295210 A255721 * A161475 A162301 A161862
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Dec 01 2003
STATUS
approved