login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090162
Values of binomial(Fibonacci(2k)*Fibonacci(2k+1),Fibonacci(2k-1)*Fibonacci(2k)-1).
7
1, 3003, 61218182743304701891431482520
OFFSET
1,2
COMMENTS
These numbers are known to occur at least six times in Pascal's triangle.
The next term is approximately 3.537 * 10^204 and is in the b-file.
The numbers of digits in a(n), n >= 1, are given in A100022.
LINKS
A. I. Shirshov, On the equation C(n, m) = C(n+1, m-1), chapter 10 in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am. Math. Soc., 1999, pp. 83-86
D. Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quarterly, 13 (1975), 295-298.
Eric Weisstein's World of Mathematics, Pascal's Triangle
FORMULA
a(n) = binomial(A089508(n), A081016(n-1)).
a(n) = binomial(A089508(n)+1, A081016(n-1)-1).
a(n) = Gamma(x)/(Gamma(y)*Gamma(1+x-y)) with x = A206351(n+1) and y = A081016(n-1). - Peter Luschny, Jul 15 2017
MAPLE
a := proc(n) local a, b, s, p; s:= 1+sqrt(5); p:=16^n;
a := 4-2*p*s^(-4*n-1)+(s+2)*s^(4*n-1)/p:
b := 1+p*((s-2)^(1-4*n)/2-s^(-1-4*n)*(2+s)):
GAMMA(a/5)/(GAMMA(b/5)*GAMMA(1+(a-b)/5)) end:
digits := [1, 4, 29, 205, 1412]: A := n -> round(evalf(a(n), digits[n]+10)):
A(4); # Peter Luschny, Jul 15 2017
MATHEMATICA
Table[Binomial[Fibonacci[2k]Fibonacci[2k+1], Fibonacci[2k-1] Fibonacci[2k]-1], {k, 4}] (* Harvey P. Dale, Aug 18 2011 *)
PROG
(PARI) A090162(n)=binomial(fibonacci(2*n+1)*fibonacci(2*n), fibonacci(2*n-1)*fibonacci(2*n)-1) \\ M. F. Hasler, Feb 17 2023
(Python) def A090162(n): return C(A000045(2*n+1)*A000045(2*n), A000045(2*n-1)*A000045(2*n)-1) # See A007318 for C(., .). - M. F. Hasler, Feb 17 2023
CROSSREFS
Subsequence of A003015.
Sequence in context: A324405 A140915 A140928 * A031818 A152207 A279584
KEYWORD
nonn,nice,changed
AUTHOR
Eric W. Weisstein, Nov 23 2003 and Wolfdieter Lang, Dec 01 2003
STATUS
approved