Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Jan 05 2025 19:51:37
%S 1,3003,61218182743304701891431482520
%N Values of binomial(Fibonacci(2k)*Fibonacci(2k+1),Fibonacci(2k-1)*Fibonacci(2k)-1).
%C These numbers are known to occur at least six times in Pascal's triangle.
%C The next term is approximately 3.537 * 10^204 and is in the b-file.
%C The numbers of digits in a(n), n >= 1, are given in A100022.
%H Hugo Pfoertner, <a href="/A090162/b090162.txt">Table of n, a(n) for n = 1..5</a>
%H A. I. Shirshov, <a href="https://bookstore.ams.org/view?ProductCode=MAWRLD/14">On the equation C(n, m) = C(n+1, m-1)</a>, chapter 10 in: Kvant Selecta: Algebra and Analysis, I, ed. S. Tabachnikov, Am. Math. Soc., 1999, pp. 83-86
%H D. Singmaster, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/13-4/singmaster.pdf">Repeated binomial coefficients and Fibonacci numbers</a>, Fibonacci Quarterly, 13 (1975), 295-298.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PascalsTriangle.html">Pascal's Triangle</a>
%F a(n) = binomial(A089508(n), A081016(n-1)).
%F a(n) = binomial(A089508(n)+1, A081016(n-1)-1).
%F a(n) = Gamma(x)/(Gamma(y)*Gamma(1+x-y)) with x = A206351(n+1) and y = A081016(n-1). - _Peter Luschny_, Jul 15 2017
%p a := proc(n) local a,b,s,p; s:= 1+sqrt(5); p:=16^n;
%p a := 4-2*p*s^(-4*n-1)+(s+2)*s^(4*n-1)/p:
%p b := 1+p*((s-2)^(1-4*n)/2-s^(-1-4*n)*(2+s)):
%p GAMMA(a/5)/(GAMMA(b/5)*GAMMA(1+(a-b)/5)) end:
%p digits := [1, 4, 29, 205, 1412]: A := n -> round(evalf(a(n),digits[n]+10)):
%p A(4); # _Peter Luschny_, Jul 15 2017
%t Table[Binomial[Fibonacci[2k]Fibonacci[2k+1],Fibonacci[2k-1] Fibonacci[2k]-1], {k,4}] (* _Harvey P. Dale_, Aug 18 2011 *)
%o (PARI) A090162(n)=binomial(fibonacci(2*n+1)*fibonacci(2*n),fibonacci(2*n-1)*fibonacci(2*n)-1) \\ _M. F. Hasler_, Feb 17 2023
%o (Python) def A090162(n): return C(A000045(2*n+1)*A000045(2*n),A000045(2*n-1)*A000045(2*n)-1) # See A007318 for C(.,.). - _M. F. Hasler_, Feb 17 2023
%Y Subsequence of A003015.
%Y Cf. A081016, A089508, A062527, A206351.
%K nonn,nice,changed
%O 1,2
%A _Eric W. Weisstein_, Nov 23 2003 and _Wolfdieter Lang_, Dec 01 2003