The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324405 Squarefree integers m > 1 such that if prime p divides m, then s_p(m) >= p and s_p(m) == 3 (mod p-1), where s_p(m) is the sum of the base p digits of m. 11
3003, 3315, 5187, 7395, 8463, 14763, 19803, 26733, 31755, 47523, 50963, 58035, 62403, 88023, 105339, 106113, 123123, 139971, 152643, 157899, 166611, 178923, 183183, 191919 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p-1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 3-Knödel numbers (A033553). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the d-Knödel numbers.
See Kellner and Sondow 2019.
LINKS
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv version, arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, arXiv:1902.10672 [math.NT] 2019.
EXAMPLE
3003 = 3*7*11*13 is squarefree and equals 11010020_3, 11520_7, 2290_11, and 14a0_13 in base p = 3, 7, 11, and 13. Then s_3(3003) = 1+1+1+2 = 5 >= 3, s_7(3003) = 1+1+5+2 = 9 >= 7, s_11(3003) = 2+2+9 = 13 >= 11, and s_13(3003) = 1+4+a = 1+4+10 = 15 >= 13. Also, s_3(3003) = 5 == 3 (mod 2), s_7(3003) = 9 == 3 (mod 6), s_11(3003) = 13 == 3 (mod 10), and s_13(3003) = 15 == 3 (mod 12), so 3003 is a member.
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #] - d, # - 1] == 0 &];
Select[Range[200000], TestSd[#, 3] &]
CROSSREFS
Sequence in context: A145304 A094336 A100896 * A140915 A140928 A090162
KEYWORD
nonn,base
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 08:13 EDT 2024. Contains 372666 sequences. (Running on oeis4.)