

A324405


Squarefree integers m > 1 such that if prime p divides m, then s_p(m) >= p and s_p(m) == 3 (mod p1), where s_p(m) is the sum of the base p digits of m.


11



3003, 3315, 5187, 7395, 8463, 14763, 19803, 26733, 31755, 47523, 50963, 58035, 62403, 88023, 105339, 106113, 123123, 139971, 152643, 157899, 166611, 178923, 183183, 191919
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 3Knödel numbers (A033553). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the dKnödel numbers.
See Kellner and Sondow 2019.


LINKS



EXAMPLE

3003 = 3*7*11*13 is squarefree and equals 11010020_3, 11520_7, 2290_11, and 14a0_13 in base p = 3, 7, 11, and 13. Then s_3(3003) = 1+1+1+2 = 5 >= 3, s_7(3003) = 1+1+5+2 = 9 >= 7, s_11(3003) = 2+2+9 = 13 >= 11, and s_13(3003) = 1+4+a = 1+4+10 = 15 >= 13. Also, s_3(3003) = 5 == 3 (mod 2), s_7(3003) = 9 == 3 (mod 6), s_11(3003) = 13 == 3 (mod 10), and s_13(3003) = 15 == 3 (mod 12), so 3003 is a member.


MATHEMATICA

SD[n_, p_] := If[n < 1  p < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #]  d, #  1] == 0 &];
Select[Range[200000], TestSd[#, 3] &]


CROSSREFS

Cf. A002997, A033553, A324315, A324316, A324317, A324318, A324319, A324320, A324369, A324370, A324371, A324404.


KEYWORD

nonn,base


AUTHOR



STATUS

approved



