The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324319 Terms of A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) that are also hexagonal numbers (A000384) with index equal to their largest prime factor. 12
 231, 561, 3655, 5565, 8911, 10585, 13695, 23653, 32131, 45451, 59685, 74305, 108345, 115921, 157641, 243253, 248865, 302253, 314821, 334153, 371091, 392055, 417241, 458403, 505515, 546535, 688551, 702705, 795691, 821121, 915981, 932295, 1004653, 1145341, 1181953 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 561, 8911, and 10585 are also Carmichael numbers (A002997). The smallest primary Carmichael number (A324316) in the sequence is 8801128801 = 181 * 733 * 66337 = A000384(66337). See the section on polygonal numbers in Kellner and Sondow 2019. Subsequence of the special polygonal numbers A324973. - Jonathan Sondow, Mar 27 2019 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017. Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, #A52 Integers 21 (2021), 21 pp.; arXiv:1902.10672 [math.NT], 2019. EXAMPLE A324315(1) = 231 = 3 * 7 * 11 = 11 * (2 * 11 - 1) = A000384(11), so 231 is a member. MATHEMATICA SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; LP[n_] := Transpose[FactorInteger[n]][]; HN[n_] := n(2n - 1); TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &]; Select[HN@ Prime[Range], TestS[#] &] CROSSREFS Cf. A000384, A002997, A195441, A324315, A324316, A324317, A324318, A324320, A324369, A324370, A324371, A324404, A324405, A324973. Sequence in context: A211712 A324315 A276832 * A360214 A246886 A258167 Adjacent sequences: A324316 A324317 A324318 * A324320 A324321 A324322 KEYWORD nonn,base AUTHOR Bernd C. Kellner and Jonathan Sondow, Feb 23 2019 EXTENSIONS More terms from Amiram Eldar, Dec 05 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 02:55 EST 2023. Contains 367452 sequences. (Running on oeis4.)