login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195441
a(n) = denominator(Bernoulli_{n+1}(x) - Bernoulli_{n+1}).
25
1, 1, 2, 1, 6, 2, 6, 3, 10, 2, 6, 2, 210, 30, 6, 3, 30, 10, 210, 42, 330, 30, 30, 30, 546, 42, 14, 2, 30, 2, 462, 231, 3570, 210, 6, 2, 51870, 2730, 210, 42, 2310, 330, 2310, 210, 4830, 210, 210, 210, 6630, 1326, 858, 66, 330, 110, 798, 114, 870, 30, 30, 6
OFFSET
0,3
COMMENTS
If s(n) is the smallest number such that s(n)*(1^n + 2^n + ... + x^n) is a polynomial in x with integer coefficients then a(n)=s(n)/(n+1) (see A064538).
a(n) is squarefree, by the von Staudt-Clausen theorem on the denominators of Bernoulli numbers. - Kieren MacMillan and Jonathan Sondow, Nov 20 2015
Kellner and Sondow give a detailed analysis of this sequence and provide a simple way to compute the terms without using Bernoulli polynomials and numbers. They prove that a(n) is the product of the primes less than or equal to (n+2)/(2+(n mod 2)) such that the sum of digits of n+1 in base p is at least p. - Peter Luschny, May 14 2017
The equation a(n-1) = denominator(Bernoulli_n(x) - Bernoulli_n) = rad(n+1) has only finitely many solutions, where rad(n) = A007947(n) is the radical of n. It is conjectured that S = {3, 5, 8, 9, 11, 27, 29, 35, 59} is the full set of all such solutions. Note that (S\{8})+1 joined with {1,2} equals A094960. More precisely, the set S implies the finite sequence of A094960. See Kellner 2023. - Bernd C. Kellner, Oct 18 2023
As was observed in the example section of A318256: denominator(B_n(x)) = rad(n+1) if n is in {0, 1, 3, 5, 9, 11, 27, 29, 35, 59} = {A094960(n) - 1: 1 <= n <= 10}. - Peter Luschny, Oct 18 2023
LINKS
Peter Luschny, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
Olivier Bordellès, Florian Luca, Pieter Moree, and Igor E. Shparlinski, Denominators of Bernoulli polynomials, Mathematika 64 (2018), 519-541.
Harald Hofstätter, Denominators of coefficients of the Baker-Campbell-Hausdorff series, arXiv:2010.03440 [math.NT], 2020. Mentions this sequence.
Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
FORMULA
a(n) = A064538(n)/(n+1). - Jonathan Sondow, Nov 12 2015
A001221(a(n)) = A001222(a(n)). - Kieren MacMillan and Jonathan Sondow, Nov 20 2015
a(2*n)/a(2*n+1) = A286516(n+1). - Bernd C. Kellner and Jonathan Sondow, May 24 2017
a(n) = A007947(A338025(n+1)). - Harald Hofstätter, Oct 10 2020
From Bernd C. Kellner, Oct 18 2023: (Start)
Note that the formulas here are shifted in index by 1 due to the definition of a(n) using index n+1!
a(n) = A324369(n+1) * A324370(n+1).
a(n) = A144845(n) / A324371(n+1).
a(n-1) = lcm(a(n), rad(n+1)), if n >= 3 is odd.
If n+1 is composite, then rad(n+1) divides a(n-1).
If m is a Carmichael number (A002997), then m divides both a(m-1) and a(m-2).
See papers of Kellner and Kellner & Sondow. (End)
MAPLE
A195441 := n -> denom(bernoulli(n+1, x)-bernoulli(n+1)):
seq(A195441(i), i=0..59);
# Formula of Kellner and Sondow:
a := proc(n) local s; s := (p, n) -> add(i, i=convert(n, base, p));
select(isprime, [$2..(n+2)/(2+irem(n, 2))]); mul(i, i=select(p->s(p, n+1)>=p, %)) end: seq(a(n), n=0..59); # Peter Luschny, May 14 2017
MATHEMATICA
a[n_] := Denominator[Together[(BernoulliB[n + 1, x] - BernoulliB[n + 1])]]; Table[a[n], {n, 0, 59}] (* Jonathan Sondow, Nov 20 2015 *)
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; DD[n_] := Times @@ Select[Prime[Range[PrimePi[(n+2)/(2+Mod[n, 2])]]], SD[n+1, #] >= # &]; Table[DD[n], {n, 0, 59}] (* Bernd C. Kellner, Oct 18 2023 *)
PROG
(PARI) a(n) = {my(vp = Vec(bernpol(n+1, x)-bernfrac(n+1))); lcm(vector(#vp, k, denominator(vp[k]))); } \\ Michel Marcus, Feb 08 2016
(Sage)
A195441 = lambda n: mul([p for p in (2..(n+2)//(2+n%2)) if is_prime(p) and sum((n+1).digits(base=p))>=p])
print([A195441(n) for n in (0..59)]) # Peter Luschny, May 14 2017
(Julia)
using Nemo, Primes
function A195441(n::Int)
n < 4 && return ZZ([1, 1, 2, 1][n+1])
P = primes(2, div(n+2, 2+n%2))
prod([ZZ(p) for p in P if p <= sum(digits(n+1, base=p))])
end
println([A195441(n) for n in 0:59]) # Peter Luschny, May 14 2017
(Python)
from math import prod
from sympy.ntheory.factor_ import primerange, digits
def A195441(n): return prod(p for p in primerange((n+2)//(2|n&1)+1) if sum(digits(n+1, p)[1:])>=p) # Chai Wah Wu, Oct 04 2023
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 18 2011
EXTENSIONS
Definition simplified by Jonathan Sondow, Nov 20 2015
STATUS
approved