login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324369 Product of all primes p dividing n such that the sum of the base p digits of n is at least p, or 1 if no such prime. 13
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 15, 2, 1, 6, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 1, 5, 6, 1, 2, 3, 10, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 5, 2, 3, 2, 1, 10, 7, 2, 3, 2, 5, 6, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

a(n) = n iff n divides denominator(Bernoulli_n(x) - Bernoulli_n) (see A195441).

a(n) = n iff n = 1 or n is in A324315.

a(n) = n if n is a Carmichael number (A002997).

See the section on Bernoulli polynomials in Kellner and Sondow 2019.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.

Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.

Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.

FORMULA

a(n) * A324371(n) = A007947(n) = radical(n).

a(n) * A324370(n) = A195441(n-1) = denominator(Bernoulli_n(x) - Bernoulli_n).

a(n) * A324370(n) * A324371(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).

EXAMPLE

6 = 2 * 3, and 6 = 110_2 in base 2 with 1+1+0 >= 2, but 6 = 20_3 in base 3 with 2+0 = 2 < 3, so a(6) = 2.

MAPLE

g:= proc(n, p) convert(convert(n, base, p), `+`) >= p end proc:

f:= proc(n) local p;

      convert(select(p -> g(n, p), numtheory:-factorset(n)), `*`)

end proc:

map(f, [$1..100]); # Robert Israel, Feb 28 2019

MATHEMATICA

SD[n_, p_] := If[n < 2, 0, Plus @@ IntegerDigits[n, p]];

LP[n_] := Transpose[FactorInteger[n]][[1]];

DD1[n_] := Times @@ Select[LP[n], SD[n, #] >= # &];

Table[DD1[n], {n, 1, 100}]

PROG

(Python)

from math import prod

from sympy.ntheory import digits

from sympy import primefactors as pf

def a(n): return prod(p for p in pf(n) if sum(digits(n, p)[1:]) >= p)

print([a(n) for n in range(1, 98)]) # Michael S. Branicky, Jul 03 2022

CROSSREFS

Cf. A007947, A144845, A195441, A324315, A324316, A324317, A324318, A324319, A324320, A324370, A324371, A324404, A324405.

Sequence in context: A206824 A293810 A356553 * A276781 A303759 A330754

Adjacent sequences:  A324366 A324367 A324368 * A324370 A324371 A324372

KEYWORD

nonn,base,look

AUTHOR

Bernd C. Kellner and Jonathan Sondow, Feb 24 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 14:14 EDT 2022. Contains 357070 sequences. (Running on oeis4.)