The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324316 Primary Carmichael numbers. 23
 1729, 2821, 29341, 46657, 252601, 294409, 399001, 488881, 512461, 1152271, 1193221, 1857241, 3828001, 4335241, 5968873, 6189121, 6733693, 6868261, 7519441, 10024561, 10267951, 10606681, 14469841, 14676481, 15247621, 15829633, 17098369, 17236801, 17316001, 19384289, 23382529, 29111881, 31405501, 34657141, 35703361, 37964809 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Squarefree integers m > 1 such that if prime p divides m, then the sum of the base-p digits of m equals p. It follows that m is then a Carmichael number (A002997). Conjecture: the sequence is infinite. If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(66337/132673) = 0.7071..., where the bound is sharp. The distribution of primary Carmichael numbers is A324317. See Kellner and Sondow 2019 and Kellner 2019. Primary Carmichael numbers are special polygonal numbers A324973. The rank of the n-th primary Carmichael number is A324976(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019 The first term is the Hardy-Ramanujan number. - Omar E. Pol, Jan 09 2020 LINKS Bernd C. Kellner, Table of n, a(n) for n = 1..10000 (computed by using Pinch's database, see link below) Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017. Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, arXiv:1902.10672 [math.NT], 2019. Bernd C. Kellner, On primary Carmichael numbers, arXiv:1902.11283 [math.NT], 2019. R. G. E. Pinch, The Carmichael numbers up to 10^18, 2008. FORMULA a_1 + a_2 + ... + a_k = p if p is prime and m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0). EXAMPLE 1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member. MATHEMATICA SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; LP[n_] := Transpose[FactorInteger[n]][]; TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &]; Select[Range[1, 10^7, 2], TestCP[#] &] PROG (Perl) use ntheory ":all"; my \$m; forsquarefree { \$m=\$_; say if @_ > 2 && is_carmichael(\$m) && vecall { \$_ == vecsum(todigits(\$m, \$_)) } @_; } 1e7; # Dana Jacobsen, Mar 28 2019 CROSSREFS Subsequence of A002997, A324315. Least primary Carmichael number with n prime factors is A306657. Cf. also A005117, A195441, A324317, A324318, A324319, A324320, A324369, A324370, A324371, A324404, A324405, A324973, A324976, A001235. Sequence in context: A154729 A083737 A182208 * A182207 A138129 A242880 Adjacent sequences:  A324313 A324314 A324315 * A324317 A324318 A324319 KEYWORD nonn,base AUTHOR Bernd C. Kellner and Jonathan Sondow, Feb 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 16:15 EST 2020. Contains 332174 sequences. (Running on oeis4.)