The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324316 Primary Carmichael numbers. 25
 1729, 2821, 29341, 46657, 252601, 294409, 399001, 488881, 512461, 1152271, 1193221, 1857241, 3828001, 4335241, 5968873, 6189121, 6733693, 6868261, 7519441, 10024561, 10267951, 10606681, 14469841, 14676481, 15247621, 15829633, 17098369, 17236801, 17316001, 19384289, 23382529, 29111881, 31405501, 34657141, 35703361, 37964809 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Squarefree integers m > 1 such that if prime p divides m, then the sum of the base-p digits of m equals p. It follows that m is then a Carmichael number (A002997). Dickson's conjecture implies that the sequence is infinite, see Kellner 2019. If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(66337/132673) = 0.7071..., where the bound is sharp. The distribution of primary Carmichael numbers is A324317. See Kellner and Sondow 2019 and Kellner 2019. Primary Carmichael numbers are special polygonal numbers A324973. The rank of the n-th primary Carmichael number is A324976(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019 The first term is the Hardy-Ramanujan number. - Omar E. Pol, Jan 09 2020 LINKS Bernd C. Kellner, Table of n, a(n) for n = 1..10000 (computed by using Pinch's database, see link below) Bernd C. Kellner, On primary Carmichael numbers, #A38 Integers 22 (2022), 39 p.; arXiv:1902.11283 [math.NT], 2019. Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017. Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, #A52 Integers 21 (2021), 21 p.; arXiv:1902.10672 [math.NT], 2019. R. G. E. Pinch, The Carmichael numbers up to 10^18, 2008. Index entries for sequences related to Carmichael numbers. FORMULA a_1 + a_2 + ... + a_k = p if p is prime and m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0). EXAMPLE 1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member. MATHEMATICA SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; LP[n_] := Transpose[FactorInteger[n]][]; TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &]; Select[Range[1, 10^7, 2], TestCP[#] &] PROG (Perl) use ntheory ":all"; my \$m; forsquarefree { \$m=\$_; say if @_ > 2 && is_carmichael(\$m) && vecall { \$_ == vecsum(todigits(\$m, \$_)) } @_; } 1e7; # Dana Jacobsen, Mar 28 2019 (Python) from sympy import factorint from sympy.ntheory import digits def ok(n): pf = factorint(n) if n < 2 or max(pf.values()) > 1: return False return all(sum(digits(n, p)[1:]) == p for p in pf) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 03 2022 CROSSREFS Subsequence of A002997, A324315. Least primary Carmichael number with n prime factors is A306657. Cf. also A005117, A195441, A324317, A324318, A324319, A324320, A324369, A324370, A324371, A324404, A324405, A324973, A324976, A001235. Sequence in context: A083737 A182208 A340092 * A182207 A138129 A242880 Adjacent sequences: A324313 A324314 A324315 * A324317 A324318 A324319 KEYWORD nonn,base AUTHOR Bernd C. Kellner and Jonathan Sondow, Feb 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 18:13 EST 2023. Contains 367717 sequences. (Running on oeis4.)