OFFSET
1,1
COMMENTS
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv preprint, arXiv:1902.10672 [math.NT], 2019-2021.
Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv preprint, arXiv:1902.11283 [math.NT], 2019-2022.
Wikipedia, Polygonal number.
EXAMPLE
P(3,5) = 15 is squarefree, and its greatest prime factor is 5, so 15 is a member.
More generally, if p is an odd prime and P(3,p) is squarefree, then P(3,p) is a member, since P(3,p) = (p^2+p)/2 = p*(p+1)/2, so p is its greatest prime factor.
CAUTION: P(6,7) = 91 = 7*13 is a member even though 7 is NOT its greatest prime factor, as P(6,7) = P(3,13) and 13 is its greatest prime factor.
MATHEMATICA
GPF[n_] := Last[Select[Divisors[n], PrimeQ]];
T = Select[Flatten[Table[{p, (p^2*(r - 2) - p*(r - 4))/2}, {p, 3, 150}, {r, 3, 100}], 1], SquareFreeQ[Last[#]] && First[#] == GPF[Last[#]] &];
Take[Union[Table[Last[t], {t, T}]], 47]
PROG
(PARI) is(k) = if(issquarefree(k) && k>1, my(p=vecmax(factor(k)[, 1]), r); p>2 && (r=2*(k/p-1)/(p-1)) && denominator(r)==1, 0); \\ Jinyuan Wang, Feb 18 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernd C. Kellner and Jonathan Sondow, Mar 21 2019
EXTENSIONS
Several missing terms inserted by Jinyuan Wang, Feb 18 2021
STATUS
approved