The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324974 Rank of the n-th special polygonal number A324973(n). 3
 3, 3, 3, 5, 3, 3, 6, 3, 6, 3, 11, 5, 3, 3, 8, 10, 5, 6, 12, 3, 15, 9, 3, 5, 3, 8, 3, 8, 19, 14, 5, 7, 3, 6, 6, 36, 21, 66, 22, 3, 10, 5, 6, 3, 3, 50, 10, 20, 5, 14, 11, 51, 3, 10, 21, 6, 13, 5, 16, 25, 3, 3, 6, 6, 12, 14, 10, 68, 5, 28, 3, 11, 29, 3, 56, 6, 19 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS While two polygonal numbers of different ranks can be equal (e.g., P(6,n) = P(3,2n-1)), that cannot occur for special polygonal numbers, since for fixed p the value of P(r,p) is strictly increasing with r. Thus the rank of a special polygonal number is well-defined. The Carmichael numbers A002997 and primary Carmichael numbers A324316 are special polygonal numbers (see Kellner and Sondow 2019). Their ranks form the subsequences A324975 and A324976. LINKS Table of n, a(n) for n=1..77. Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019. Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019. Wikipedia, Polygonal number FORMULA a(n) = 2 + 2*((m/p)-1)/(p-1), where m = A324973(n) and p is its greatest prime factor. (Proof: solve m = P(r,p) = (p^2*(r-2) - p*(r-4))/2 for r.) EXAMPLE If m = A324973(4) = 70 = 2*5*7, then p = 7, so a(4) = 2+2*((70/7)-1)/(7-1) = 5. MATHEMATICA GPF[n_] := Last[Select[Divisors[n], PrimeQ]]; T = Select[Flatten[Table[{p, (p^2*(r - 2) - p*(r - 4))/2}, {p, 3, 150}, {r, 3, 100}], 1], SquareFreeQ[Last[#]] && First[#] == GPF[Last[#]] &]; TT = Take[Union[Table[Last[T[[i]]], {i, Length[T]}]], 47]; Table[2 + 2*(t/GPF[t] - 1)/(GPF[t] - 1), {t, TT}] CROSSREFS A324975 and A324976 are subsequences. Cf. A002997, A324316, A324972, A324973, A324977. Sequence in context: A262289 A096918 A075018 * A125958 A247244 A344185 Adjacent sequences: A324971 A324972 A324973 * A324975 A324976 A324977 KEYWORD nonn AUTHOR Bernd C. Kellner and Jonathan Sondow, Mar 24 2019 EXTENSIONS Several missing terms inserted by and more terms from Jinyuan Wang, Feb 18 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 18:13 EST 2023. Contains 367717 sequences. (Running on oeis4.)