login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324971
Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different.
5
0, 0, 0, 0, 0, 1, 4, 12, 31, 79, 192, 459, 1082, 2537, 5922, 13816, 32222, 75254, 176034, 412667, 969531, 2283278
OFFSET
1,7
COMMENTS
A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root.
EXAMPLE
The a(6) = 1 through a(8) = 12 trees:
((o)((o))) ((o)(o(o))) (o(o)(o(o)))
(o(o)((o))) (((o))(o(o)))
(((o)((o)))) (((o)(o(o))))
((o)(((o)))) ((o)((o(o))))
((o)(o((o))))
((o(o)((o))))
(o((o)((o))))
(o(o)(((o))))
((((o)((o)))))
(((o))(((o))))
(((o)(((o)))))
((o)((((o)))))
MATHEMATICA
rits[n_]:=Join@@Table[Select[Union[Sort/@Tuples[rits/@ptn]], UnsameQ@@#&], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[rits[n], !UnsameQ@@Cases[#, {__}, {0, Infinity}]&]], {n, 10}]
CROSSREFS
The Matula-Goebel numbers of these trees are given by A324970.
Sequence in context: A190376 A276785 A171844 * A273387 A328240 A369817
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Mar 21 2019
STATUS
approved