login
A324971
Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different.
5
0, 0, 0, 0, 0, 1, 4, 12, 31, 79, 192, 459, 1082, 2537, 5922, 13816, 32222, 75254, 176034, 412667, 969531, 2283278
OFFSET
1,7
COMMENTS
A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root.
EXAMPLE
The a(6) = 1 through a(8) = 12 trees:
((o)((o))) ((o)(o(o))) (o(o)(o(o)))
(o(o)((o))) (((o))(o(o)))
(((o)((o)))) (((o)(o(o))))
((o)(((o)))) ((o)((o(o))))
((o)(o((o))))
((o(o)((o))))
(o((o)((o))))
(o(o)(((o))))
((((o)((o)))))
(((o))(((o))))
(((o)(((o)))))
((o)((((o)))))
MATHEMATICA
rits[n_]:=Join@@Table[Select[Union[Sort/@Tuples[rits/@ptn]], UnsameQ@@#&], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[rits[n], !UnsameQ@@Cases[#, {__}, {0, Infinity}]&]], {n, 10}]
CROSSREFS
The Matula-Goebel numbers of these trees are given by A324970.
Sequence in context: A190376 A276785 A171844 * A273387 A328240 A369817
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Mar 21 2019
STATUS
approved