login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different.
5

%I #6 Mar 22 2019 00:33:48

%S 0,0,0,0,0,1,4,12,31,79,192,459,1082,2537,5922,13816,32222,75254,

%T 176034,412667,969531,2283278

%N Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different.

%C A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root.

%e The a(6) = 1 through a(8) = 12 trees:

%e ((o)((o))) ((o)(o(o))) (o(o)(o(o)))

%e (o(o)((o))) (((o))(o(o)))

%e (((o)((o)))) (((o)(o(o))))

%e ((o)(((o)))) ((o)((o(o))))

%e ((o)(o((o))))

%e ((o(o)((o))))

%e (o((o)((o))))

%e (o(o)(((o))))

%e ((((o)((o)))))

%e (((o))(((o))))

%e (((o)(((o)))))

%e ((o)((((o)))))

%t rits[n_]:=Join@@Table[Select[Union[Sort/@Tuples[rits/@ptn]],UnsameQ@@#&],{ptn,IntegerPartitions[n-1]}];

%t Table[Length[Select[rits[n],!UnsameQ@@Cases[#,{__},{0,Infinity}]&]],{n,10}]

%Y The Matula-Goebel numbers of these trees are given by A324970.

%Y Cf. A000081, A004111, A290689, A317713, A324850, A324922, A324923, A324924, A324931, A324935, A324936, A324979.

%K nonn,more

%O 1,7

%A _Gus Wiseman_, Mar 21 2019