OFFSET
1,3
LINKS
Bruno Berselli, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1).
FORMULA
G.f.: x^2*(1 + 5*x - x^2 - x^3) / ((1 - x)*(1 - 10*x^2 + x^4)).
a(n) = a(n-1) +10*a(n-2) -10*a(n-3) -a(n-4) +a(n-5) for n>5, a(1)=0, a(2)=1, a(3)=6, a(4)=15, a(5)=64.
a(n) = -1/2 + ( (-3*(-1)^n + 2*sqrt(6))*(5 + 2*sqrt(6))^floor(n/2) - (3*(-1)^n + 2*sqrt(6))*(5 - 2*sqrt(6))^floor(n/2) )/12.
EXAMPLE
153 is in the sequence because 3*153*154/2+1 = 188^2.
MATHEMATICA
LinearRecurrence[{1, 10, -10, -1, 1}, {0, 1, 6, 15, 64}, 30]
CROSSREFS
Sequence A129444 gives n+1.
Cf. A000217, A080872, A129445 (square roots of 3*A000217(a(n))+1), A132596 (numbers m such that 3*A000217(m) is a square).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 10 2013
STATUS
approved