OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (0, 10, 0, -1).
FORMULA
G.f.: (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1).
a(n) = (3+sqrt(3))/12*(sqrt(3)-sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)+sqrt(2))^n+(3+sqrt(3))/12*(sqrt(3)+sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)-sqrt(2))^n. [Richard Choulet, Dec 03 2008]
a(n+4) = 10*a(n+2)-a(n). [Richard Choulet, Dec 04 2008]
MATHEMATICA
CoefficientList[Series[(-x^3-5 x^2+x+1)/(x^4-10 x^2+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, 10, 0, -1}, {1, 1, 5, 9}, 30] (* Harvey P. Dale, May 06 2012 *)
PROG
(PARI) Vec( (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1) + O(x^66) ) \\ Joerg Arndt, Jan 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Feb 22 2003
STATUS
approved