login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080872
a(n)*a(n+3) - a(n+1)*a(n+2) = 4, given a(0)=a(1)=1, a(2)=5.
6
1, 1, 5, 9, 49, 89, 485, 881, 4801, 8721, 47525, 86329, 470449, 854569, 4656965, 8459361, 46099201, 83739041, 456335045, 828931049, 4517251249, 8205571449, 44716177445, 81226783441, 442644523201, 804062262961, 4381729054565, 7959395846169, 43374646022449, 78789896198729, 429364731169925
OFFSET
0,3
FORMULA
G.f.: (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1).
a(n) = (3+sqrt(3))/12*(sqrt(3)-sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)+sqrt(2))^n+(3+sqrt(3))/12*(sqrt(3)+sqrt(2))^n+(3-sqrt(3))/12*(-sqrt(3)-sqrt(2))^n. [Richard Choulet, Dec 03 2008]
a(n+4) = 10*a(n+2)-a(n). [Richard Choulet, Dec 04 2008]
MATHEMATICA
CoefficientList[Series[(-x^3-5 x^2+x+1)/(x^4-10 x^2+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, 10, 0, -1}, {1, 1, 5, 9}, 30] (* Harvey P. Dale, May 06 2012 *)
PROG
(PARI) Vec( (-x^3 - 5*x^2 + x + 1)/(x^4 - 10*x^2 + 1) + O(x^66) ) \\ Joerg Arndt, Jan 29 2016
CROSSREFS
Bisections are A001079 and A072256.
Sequence in context: A088974 A105182 A100457 * A328333 A173776 A289909
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Feb 22 2003
STATUS
approved