|
|
A072256
|
|
a(n) = 10*a(n-1) - a(n-2) for n > 1, a(0) = a(1) = 1.
|
|
36
|
|
|
1, 1, 9, 89, 881, 8721, 86329, 854569, 8459361, 83739041, 828931049, 8205571449, 81226783441, 804062262961, 7959395846169, 78789896198729, 779939566141121, 7720605765212481, 76426118085983689, 756540575094624409
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Any k in the sequence is followed by 5*k + 2*sqrt{2(3*k^2 - 1)}.
Gives solutions for x in 3*x^2 - 2*y^2 = 1. Corresponding y is given by A054320(n-1). [corrected by Jon E. Schoenfield, Jun 08 2018]
a(n) = L(n-1,10), where L is defined as in A108299; see also A054320 for L(n,-10). - Reinhard Zumkeller, Jun 01 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7,8,9} which do not end in 0. - Tanya Khovanova, Jan 10 2007
a(n) = A138288(n-1) for n > 0. - Reinhard Zumkeller, Mar 12 2008
For n >= 2, a(n) equals the permanent of the (2n-2) X (2n-2) tridiagonal matrix with sqrt(8)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Except for the first term, positive values of x (or y) satisfying x^2 - 10xy + y^2 + 8 = 0. - Colin Barker, Feb 09 2014
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 283).
Bruno Deschamps, Sur les bonnes valeurs initiales de la suite de Lucas-Lehmer, Journal of Number Theory, Volume 130, Issue 12, December 2010, Pages 2658-2670.
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
Tanya Khovanova, Recursive Sequences
J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
Index entries for sequences related to Chebyshev polynomials
Index entries for linear recurrences with constant coefficients, signature (10,-1).
|
|
FORMULA
|
a(n) = (3-sqrt(6))/6 * (5+2*sqrt(6))^n + (3+sqrt(6))/6 * (5-2*sqrt(6))^n.
a(n) = {2*A031138(n) + 1}/3 = sqrt(2*A054320(n)^2 + 1)/3), n>=1.
a(n) = U(n-1, 5)-U(n-2, 5) = T(2*n-1, sqrt(3))/sqrt(3) with Chebyshev's U- and T- polynomials and U(-1, x) := 0, U(-2, x) := -1, T(-1, x) := x.
G.f.: (1-9*x)/(1-10*x+x^2).
For all members x of the sequence, 6*x^2 - 2 is a square. Lim_{n->infinity} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 10 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 8) = a(n+1). - Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 80 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = sqrt(A046172(n)). - Paul Weisenhorn, May 15 2009
a(n) = ceiling(((3-sqrt(6))*(5+2*sqrt(6))^n)/6). - Paul Weisenhorn, May 23 2020
|
|
MAPLE
|
seq( simplify(ChebyshevU(n, 5) -9*ChebyshevU(n-1, 5)), n=0..20); # G. C. Greubel, Jan 14 2020
|
|
MATHEMATICA
|
a[n_]:= a[n]= 10a[n-1] -a[n-2]; a[0]=a[1]=1; Table[ a[n], {n, 0, 20}]
CoefficientList[Series[(1-9x)/(1-10x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
Table[ChebyshevU[n, 5] -9*ChebyshevU[n-1, 5], {n, 0, 20}] (* G. C. Greubel, Jan 14 2020 *)
LinearRecurrence[{10, -1}, {1, 1}, 20] (* Harvey P. Dale, Jun 17 2022 *)
|
|
PROG
|
(Sage) [lucas_number1(n, 10, 1)-lucas_number1(n-1, 10, 1) for n in range(0, 20)] # Zerinvary Lajos, Nov 10 2009
(Magma) [n le 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 10 2014
(PARI) a(n)=([0, 1; -1, 10]^n*[1; 1])[1, 1] \\ Charles R Greathouse IV, May 10 2016
(PARI) vector(21, n, polchebyshev(n-1, 2, 5) -9*polchebyshev(n-2, 2, 5) ) \\ G. C. Greubel, Jan 14 2020
(GAP) a:=[1, 1];; for n in [3..20] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
|
|
CROSSREFS
|
Cf. A031138, A046172, A054320.
Row 10 of array A094954.
First differences of A004189.
Essentially the same as A138288.
Sequence in context: A198967 A320093 A015584 * A138288 A059482 A109002
Adjacent sequences: A072253 A072254 A072255 * A072257 A072258 A072259
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Lekraj Beedassy, Jul 08 2002
|
|
EXTENSIONS
|
Edited by Robert G. Wilson v, Jul 17 2002
|
|
STATUS
|
approved
|
|
|
|