OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1).
FORMULA
For n > 1: a(2*n-1) = 3*a(2*n-2) + 2*a(2*n-3) - a(2*n-4); a(2n) = 3*a(2*n-1) - a(2*n-2).
G.f.: (1 + x - 8*x^2 - 3*x^3) / (1 - 10*x^2 + x^4). - N. J. A. Sloane, Jul 19 2005
a(n+4) = 10*a(n+2) - a(n). [Richard Choulet, Dec 04 2008]
a(n) = (1/24*(3 + 3*3^(1/2)*2^(1/2) + 6*2^(1/2) + 2*3^(1/2))/(3^(1/2)*2^(1/2) + 2))*(sqrt(3) + sqrt(2))^n + (1/16*3^(1/2)*2^(1/2) + 1/8*2^(1/2) + 1/4 + 1/6*3^(1/2))*(sqrt(3) - sqrt(2))^n + (1/24*(3*3^(1/2)*2^(1/2) - 6*2^(1/2) + 3 - 2*3^(1/2))/(3^(1/2)*2^(1/2) + 2))*( - sqrt(3) - sqrt(2))^n + (1/16*3^(1/2)*2^(1/2) - 1/8*2^(1/2) + 1/4 - 1/6*3^(1/2))*( - sqrt(3) + sqrt(2))^n. [Richard Choulet, Dec 04 2008]
MATHEMATICA
CoefficientList[Series[(-3x^3-8x^2+x+1)/(x^4-10x^2+1), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, 10, 0, -1}, {1, 1, 2, 7}, 30] (* Harvey P. Dale, Feb 27 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 22 2003
STATUS
approved