login
A276781
a(n) = 1+n-(nearest power of prime <= n); for n > 1, a(n) = minimal b such that the numbers binomial(n,k) for b <= k <= n-b have a common divisor greater than 1.
13
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2
OFFSET
1,6
COMMENTS
The definition in the video has "b < k < n-b" rather than "b <= k <= n-b", but that appears to be a typographical error.
From Antti Karttunen, Jan 21 2020: (Start)
a(n) = 1 if n is a power of prime (term of A000961), otherwise a(n) is one more than the distance to the nearest preceding prime power.
For n > 1, a(n) indicates the maximum region on the row n of Pascal's triangle (A007318) such that binomial terms C(n,a(n)) .. C(n,n-a(n)) all share a common prime factor. Because for all prime powers, p^k, the binomial terms C(p^k,1) .. C(p^k,p^k-1) have p as their prime factor, we have a(A000961(n)) = 1 for all n, while for each successive n that is not a prime power, the region of shared prime factor shrinks one step more towards the center of the triangle. From this follows that this is the ordinal transform of A025528 (equally, of A065515, or of A003418(n) from n >= 1 onward), equivalent to the simple definition given above.
(End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384 (terms for n = 2..1685 from R. J. Mathar, terms 1686..10000 from Chai Wah Wu).
Christophe Soulé, Le triangle de Pascal et ses propriétés, Lecture, Soc. Math. de France, Feb 13 2008; SMF link (in French).
FORMULA
If A010055(n) == 1, a(n) = 1, otherwise a(n) = 1 + a(n-1). - Antti Karttunen, Jan 21 2020
EXAMPLE
Row 6 of Pascal's triangle is 1,6,15,20,15,6,1 and [15,20,15] have a common divisor of 5. Since 15 = binomial(6,2), a(6)=2.
MAPLE
mygcd:=proc(lis) local i, g, m;
m:=nops(lis); g:=lis[1];
for i from 2 to m do g:=gcd(g, lis[i]); od:
g; end;
f:=proc(n) local b, lis; global mygcd;
for b from floor(n/2) by -1 to 1 do
lis:=[seq(binomial(n, i), i=b..n-b)];
if mygcd(lis)=1 then break; fi; od:
b+1;
end;
[seq(f(n), n=2..120)];
MATHEMATICA
Table[b = 1; While[GCD @@ Map[Binomial[n, #] &, Range[b, n - b]] == 1, b++]; b, {n, 92}] (* Michael De Vlieger, Oct 03 2016 *)
PROG
(PARI) A276781(n) = if(1==n, 1, forstep(k=n, 1, -1, if(isprimepower(k), return(1+n-k)))); \\ Antti Karttunen, Jan 21 2020
(Python)
from sympy import factorint
def A276781(n): return 1+n-next(filter(lambda m:len(factorint(m))<=1, range(n, 0, -1))) # Chai Wah Wu, Oct 25 2024
CROSSREFS
Cf. A007318, A010055, A276782 (positions of records), A000961 (positions of ones), A024619 (positions of terms > 1).
Sequence in context: A293810 A356553 A324369 * A303759 A330754 A330753
KEYWORD
nonn,look,changed
AUTHOR
N. J. A. Sloane, Sep 29 2016, following a suggestion from Eric Desbiaux
EXTENSIONS
Term a(1) = 1 prepended and alternative simpler definition added to the name by Antti Karttunen, Jan 20 2020
STATUS
approved