login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002944
a(n) = LCM(1,2,...,n) / n.
(Formerly M0912 N0344)
35
1, 1, 2, 3, 12, 10, 60, 105, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 12252240, 11639628, 11085360, 10581480, 232792560, 223092870, 1070845776, 1029659400, 2974571600, 2868336900, 80313433200, 77636318760, 2329089562800
OFFSET
1,3
COMMENTS
Equals LCM of all numbers of (n-1)-st row of Pascal's triangle [Montgomery-Breusch]. - J. Lowell, Apr 16 2014. Corrected by N. J. A. Sloane, Sep 04 2019
Williams proves that a(n+1) = A034386(n) for n=2, 11 and 23 only. This is trivially the case for n=0 and 1, too. - Michel Marcus, Apr 16 2020
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter L. Montgomery (proposer) and Robert Breusch (solver), LCM of Binomial Coefficients, Problem E2686, American Mathematical Monthly, Vol. 84 (1977), p. 820.
Peter L. Montgomery (proposer) and Robert Breusch (solver), LCM of Binomial Coefficients, Solution to Problem E2686, American Mathematical Monthly, Vol. 86 (1979), p. 131.
Ian S. Williams, On a problem of Kurt Mahler concerning binomial coefficents (sic), Bulletin of the Australian Mathematical Society, Volume 14, Issue 2, April 1976, pp. 299-302.
FORMULA
a(n) = A003418(n) / n.
a(n) = LCM of C(n-1, 0), C(n-1, 1), ..., C(n-1, n-1). [Montgomery-Breusch] [Corrected by N. J. A. Sloane, Jun 11 2008]
Equally, a(n+1) = LCM_{k=0..n} binomial(n,k). - Franklin T. Adams-Watters, Jul 05 2009
MAPLE
A003418 := n-> lcm(seq(i, i=1..n)); f:=n->A003418(n)/n;
BB:=n->sum(1/sqrt(k), k=1..n): a:=n->floor(denom(BB(n))/n): seq(a(n), n=1..29); # Zerinvary Lajos, Mar 29 2007
MATHEMATICA
Table[Apply[LCM, Range[n]]/n, {n, 1, 30}] (* Geoffrey Critzer, Feb 10 2013 *)
PROG
(PARI) a(n) = lcm(vector(n, i, i))/n; \\ Michel Marcus, Apr 16 2014
(Haskell)
a002944 n = a003418 n `div` n -- Reinhard Zumkeller, Mar 16 2015
CROSSREFS
Cf. A025527 and A025537.
Cf. A056606 (squarefree kernel).
Sequence in context: A100561 A334721 A081529 * A266366 A201501 A370548
KEYWORD
nonn,easy
EXTENSIONS
More terms from Jud McCranie, Jan 17 2000
Edited by N. J. A. Sloane, Jun 11 2008 and Sep 04 2019
STATUS
approved