login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201501
Number of n X 5 0..1 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
1
2, 3, 12, 12, 40, 32, 98, 73, 204, 141, 380, 252, 650, 414, 1042, 649, 1590, 967, 2330, 1394, 3302, 1944, 4550, 2649, 6122, 3523, 8070, 4604, 10450, 5910, 13320, 7483, 16744, 9343, 20790, 11538, 25528, 14090, 31032, 17053, 37382, 20451, 44660, 24342
OFFSET
1,1
COMMENTS
Column 5 of A201503.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +2*a(n-2) -3*a(n-3) +a(n-4) +2*a(n-5) -4*a(n-6) +2*a(n-7) +2*a(n-8) -4*a(n-9) +4*a(n-11) -2*a(n-12) -2*a(n-13) +4*a(n-14) -2*a(n-15) -a(n-16) +3*a(n-17) -2*a(n-18) -a(n-19) +a(n-20).
Even terms are A188183((n-2)/2).
Empirical g.f.: x*(2 + x + 5*x^2 + 11*x^4 - 3*x^5 + 12*x^6 + 3*x^7 + 5*x^8 - x^9 + 12*x^10 - 3*x^11 - x^12 + 5*x^13 - 2*x^14 - x^15 + 3*x^16 - 2*x^17 - x^18 + x^19) / ((1 - x)^5*(1 + x)^5*(1 - x + x^2)*(1 + x^2)^2*(1 + x^4)). - Colin Barker, May 23 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..1..1
..0..0..1..1..1....0..0..0..1..1....0..0..0..1..1....0..0..0..1..1
..0..0..1..1..1....0..1..1..1..1....0..0..1..1..1....0..0..1..1..1
..0..1..1..1..1....0..1..1..1..1....1..1..1..1..1....0..0..1..1..1
CROSSREFS
Cf. A201503.
Sequence in context: A081529 A002944 A266366 * A370548 A302843 A037321
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 02 2011
STATUS
approved