Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 May 23 2018 08:11:37
%S 2,3,12,12,40,32,98,73,204,141,380,252,650,414,1042,649,1590,967,2330,
%T 1394,3302,1944,4550,2649,6122,3523,8070,4604,10450,5910,13320,7483,
%U 16744,9343,20790,11538,25528,14090,31032,17053,37382,20451,44660,24342
%N Number of n X 5 0..1 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
%C Column 5 of A201503.
%H R. H. Hardin, <a href="/A201501/b201501.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +2*a(n-2) -3*a(n-3) +a(n-4) +2*a(n-5) -4*a(n-6) +2*a(n-7) +2*a(n-8) -4*a(n-9) +4*a(n-11) -2*a(n-12) -2*a(n-13) +4*a(n-14) -2*a(n-15) -a(n-16) +3*a(n-17) -2*a(n-18) -a(n-19) +a(n-20).
%F Even terms are A188183((n-2)/2).
%F Empirical g.f.: x*(2 + x + 5*x^2 + 11*x^4 - 3*x^5 + 12*x^6 + 3*x^7 + 5*x^8 - x^9 + 12*x^10 - 3*x^11 - x^12 + 5*x^13 - 2*x^14 - x^15 + 3*x^16 - 2*x^17 - x^18 + x^19) / ((1 - x)^5*(1 + x)^5*(1 - x + x^2)*(1 + x^2)^2*(1 + x^4)). - _Colin Barker_, May 23 2018
%e Some solutions for n=4:
%e ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..1..1
%e ..0..0..1..1..1....0..0..0..1..1....0..0..0..1..1....0..0..0..1..1
%e ..0..0..1..1..1....0..1..1..1..1....0..0..1..1..1....0..0..1..1..1
%e ..0..1..1..1..1....0..1..1..1..1....1..1..1..1..1....0..0..1..1..1
%Y Cf. A201503.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 02 2011