login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338025
a(n) = LCM(k*j_1!*...*j_k! : j_1,...,j_k>=1, j_1+...+j_k=n, k=1,...,n)/n!.
2
1, 1, 2, 1, 6, 2, 6, 3, 10, 2, 6, 2, 210, 30, 12, 3, 30, 10, 210, 42, 330, 30, 60, 30, 546, 42, 28, 2, 60, 4, 924, 231, 3570, 210, 6, 2, 51870, 2730, 420, 42, 2310, 330, 4620, 210, 9660, 420, 420, 210, 6630, 1326, 1716, 66, 660, 220, 1596, 114, 1740, 60, 60, 12, 1861860, 60060
OFFSET
1,3
COMMENTS
For each prime p >= 2, the exponent of p in a(n) is the largest integer t such that p^t is less than or equal to the sum of digits of n in base p.
n!*a(n) is the smallest common denominator of the n-th degree coefficients of the Baker-Campbell-Hausdorff series.
LINKS
Harald Hofstätter, Denominators of coefficients of the Baker-Campbell-Hausdorff series, arXiv:2010.03440 [math.NT], 2020.
Harald Hofstätter, A simple and efficient algorithm for computing the Baker-Campbell-Hausdorff series, arXiv:2212.01290 [math.RA], 2022.
Eric Weisstein's World of Mathematics, Baker-Campbell-Hausdorff Series.
FORMULA
A007947(a(n)) = A195441(n-1).
MAPLE
A338025 := n->mul(map(p->p^(ilog[p](add(i, i=convert(n, base, p)))), select(isprime, [seq(p, p=2..n)]))):
seq(A338025(n), n=1..50);
PROG
(Julia)
using Primes
A338025(n::Int) =
prod([p^(floor(Int, log(p, sum(digits(n, base=p)))))
for p in 2:n if isprime(p)])
println([A338025(n) for n = 1:50])
(PARI) a(n) = {my(v = matrix(primepi(n), 2, i, j, my(p=prime(i)); if (j==1, p, logint(sumdigits(n, p), p)))); factorback(v); } \\ Michel Marcus, Oct 08 2020
CROSSREFS
Cf. A007947 (squarefree kernel), A195441.
Sequence in context: A365048 A050457 A195441 * A239537 A076891 A071883
KEYWORD
nonn
AUTHOR
Harald Hofstätter, Oct 07 2020
STATUS
approved