The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050457 a(n) = Sum_{ d divides n, d==1 mod 4} d - Sum_{ d divides n, d==3 mod 4} d. 5
 1, 1, -2, 1, 6, -2, -6, 1, 7, 6, -10, -2, 14, -6, -12, 1, 18, 7, -18, 6, 12, -10, -22, -2, 31, 14, -20, -6, 30, -12, -30, 1, 20, 18, -36, 7, 38, -18, -28, 6, 42, 12, -42, -10, 42, -22, -46, -2, 43, 31, -36, 14, 54, -20, -60, -6, 36, 30, -58, -12, 62, -30, -42, 1, 84, 20, -66, 18, 44, -36, -70 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Multiplicative because it is the Inverse Moebius transform of [1 0 -3 0 5 0 -7 ...], which is multiplicative. - Christian G. Bower, May 18 2005 LINKS Indranil Ghosh, Table of n, a(n) for n = 1..5000 J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8). FORMULA a(n) is multiplicative with a(p^e)=1 if p=2, a(p^e)=(p^(e+1)-1)/(p-1) if p == 1 (mod 4), a(p^e)=((-p)^(e+1)-1)/(-p-1) if p == 3 (mod 4). - Michael Somos, May 29 2005 G.f.: Sum_{k>=1} (-1)^(k-1)*(2*k - 1)*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018 a(n) = Im(Sum_{d|n} d*i^d). - Ridouane Oudra, Feb 02 2020 MAPLE with(numtheory): A050457 := proc(n) local count1, count3, d; count1 := 0: count3 := 0: for d in numtheory[divisors](n) do if d mod 4 = 1 then count1 := count1+d elif d mod 4 = 3 then count3 := count3+d fi: end do: count1-count3; end proc: # Ridouane Oudra, Feb 02 2020 # second Maple program: a:= n-> add(`if`(d::odd, d*(-1)^((d-1)/2), 0), d=numtheory[divisors](n)): seq(a(n), n=1..100); # Alois P. Heinz, Feb 03 2020 MATHEMATICA Table[Sum[KroneckerSymbol[-4, d] d , {d, Divisors[n]}], {n, 71}] (* Indranil Ghosh, Mar 16 2017 *) PROG (PARI) {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 1, p*=kronecker(-4, p); (p^(e+1)-1)/(p-1)))))} /* Michael Somos, May 29 2005 */ (PARI) {a(n)=if(n<1, 0, sumdiv(n, d, kronecker(-4, d)*d))} /* Michael Somos, May 29 2005 */ CROSSREFS Column k=1 of A322143. Sequence in context: A333726 A306549 A198870 * A195441 A338025 A239537 Adjacent sequences: A050454 A050455 A050456 * A050458 A050459 A050460 KEYWORD sign,mult AUTHOR N. J. A. Sloane, Dec 23 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 07:38 EST 2022. Contains 358691 sequences. (Running on oeis4.)