login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050460
a(n) = Sum_{d|n, n/d=1 mod 4} d.
11
1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 11, 12, 14, 14, 18, 16, 18, 20, 19, 24, 22, 22, 23, 24, 31, 28, 30, 28, 30, 36, 31, 32, 34, 36, 42, 40, 38, 38, 42, 48, 42, 44, 43, 44, 60, 46, 47, 48, 50, 62, 54, 56, 54, 60, 66, 56, 58, 60, 59, 72, 62, 62, 73, 64, 84, 68
OFFSET
1,2
COMMENTS
Not multiplicative: a(3)*a(7) <> a(21), for example.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{n>0} n*x^n/(1-x^(4*n)). - Vladeta Jovovic, Nov 14 2002
G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(4*k-3))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050464(n).
a(n) = A050469(n) + A050464(n).
a(n) = (A002131(n) + A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A222183. (End)
MAPLE
A050460 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if (n/d) mod 4 = 1 then
a := a+d ;
end if;
end do:
a;
end proc:
seq(A050460(n), n=1..40) ; # R. J. Mathar, Dec 20 2011
MATHEMATICA
a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#&]; Array[a, 70] (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) a(n)=sumdiv(n, d, if(n/d%4==1, d)) \\ Charles R Greathouse IV, Dec 04 2013
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
STATUS
approved