login
A379108
Dirichlet convolution of sigma with A359579.
3
1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 12, 12, 14, 14, 18, 16, 18, 20, 20, 24, 21, 24, 24, 24, 31, 28, 30, 28, 30, 36, 31, 32, 36, 36, 42, 40, 38, 40, 42, 48, 42, 42, 44, 48, 60, 48, 48, 48, 50, 62, 54, 56, 54, 60, 72, 56, 60, 60, 60, 72, 62, 62, 70, 64, 84, 72, 68, 72, 72, 84, 72, 80, 74, 76, 93, 80, 84, 84, 80, 96, 91, 84, 84, 84
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} A000203(d)*A359579(n/d).
From Amiram Eldar, Jan 02 2025: (Start)
Multiplicative with a(2^e) = 2^e, and for an odd prime p, a(p^e) = (p^(e+2) + ((-1)^e-1)*(p-1)/2 - 1)/(p^2-1) if p is a Mersenne prime (A000668), and a(p^e) = sigma(p^e) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/16) / Product_{p in A000668} (1 + 1/p^2) = 0.54346268676686758531... . (End)
MATHEMATICA
f[p_, e_] := If[2^IntegerExponent[p + 1, 2] == p + 1, (p^(e + 2) + ((-1)^e - 1)*(p - 1)/2 - 1)/(p^2 - 1), (p^(e + 1) - 1)/(p - 1)]; f[2, e_] := 2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 02 2025 *)
PROG
(PARI)
A209229(n) = (n && !bitand(n, n-1));
A359579(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], -(1==f[k, 2]), (-A209229(1+f[k, 1]))^f[k, 2])); };
A379108(n) = sumdiv(n, d, sigma(d)*A359579(n/d));
CROSSREFS
Cf. A000203, A000668, A054784, A336923, A359579, A379109 (Dirichlet inverse).
Sequence in context: A106006 A364104 A050460 * A246594 A175808 A334666
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Dec 17 2024
STATUS
approved