login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359579
Dirichlet inverse of A336923, where A336923(n) = 1 if sigma(2n) - sigma(n) is a power of 2, otherwise 0.
5
1, -1, -1, 0, 0, 1, -1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1
OFFSET
1
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A336923(n/d) * a(d).
Multiplicative with a(2^e) = -1 if e = 1, and 0 if e > 1, and for primes p > 2, a(p^e) = (-A036987(p))^e. - Corrected by Amiram Eldar and Antti Karttunen, Jan 24 2023
For all n >= 1, abs(a(A056652(n))) = abs(a(2*A056652(n))) = 1.
For all n >= 1, abs(a(A219174(n))) = 1 if A219174(n) is not a multiple of 4.
MATHEMATICA
f[p_, e_] := If[2^IntegerExponent[p + 1, 2] == p + 1, (-1)^e, 0]; f[2, e_] := If[e == 1, -1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 24 2023 *)
PROG
(PARI)
A209229(n) = (n && !bitand(n, n-1));
A359579(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], -(1==f[k, 2]), (-A209229(1+f[k, 1]))^f[k, 2])); };
CROSSREFS
Cf. also A359578.
Sequence in context: A355946 A123272 A266623 * A246142 A091219 A304109
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jan 08 2023
STATUS
approved