login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359578
Dirichlet inverse of A336477, where A336477(n) = 1 if phi(n) is a power of 2, otherwise 0.
3
1, -1, -1, 0, -1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
OFFSET
1
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A336477(n/d) * a(d).
Multiplicative with a(2^e) = -1 if e = 1, and 0 if e > 1, and for primes p > 2, a(p^e) = (-A209229(p-1))^e. - Corrected by Amiram Eldar and Antti Karttunen, Jan 24 2023
MATHEMATICA
f[p_, e_] := If[2^IntegerExponent[p - 1, 2] == p - 1, (-1)^e, 0]; f[2, e_] := If[e == 1, -1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 24 2023 *)
PROG
(PARI)
A209229(n) = (n && !bitand(n, n-1));
A359578(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], -(1==f[k, 2]), (-A209229(f[k, 1]-1))^f[k, 2])); };
CROSSREFS
Cf. also A359579.
Sequence in context: A265695 A116938 A105589 * A097806 A167374 A294821
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jan 08 2023
STATUS
approved