login
A359578
Dirichlet inverse of A336477, where A336477(n) = 1 if phi(n) is a power of 2, otherwise 0.
3
1, -1, -1, 0, -1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
OFFSET
1
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A336477(n/d) * a(d).
Multiplicative with a(2^e) = -1 if e = 1, and 0 if e > 1, and for primes p > 2, a(p^e) = (-A209229(p-1))^e. - Corrected by Amiram Eldar and Antti Karttunen, Jan 24 2023
MATHEMATICA
f[p_, e_] := If[2^IntegerExponent[p - 1, 2] == p - 1, (-1)^e, 0]; f[2, e_] := If[e == 1, -1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 24 2023 *)
PROG
(PARI)
A209229(n) = (n && !bitand(n, n-1));
A359578(n) = { my(f=factor(n)); prod(k=1, #f~, if(2==f[k, 1], -(1==f[k, 2]), (-A209229(f[k, 1]-1))^f[k, 2])); };
CROSSREFS
Cf. also A359579.
Sequence in context: A265695 A116938 A105589 * A097806 A167374 A294821
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jan 08 2023
STATUS
approved