login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097806 Riordan array (1+x,1) read by rows. 46
1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Pair sum operator. Columns have g.f. (1+x)x^k. Row sums are A040000. Diagonal sums are (1,1,1,....). Riordan inverse is (1/(1+x), 1). A097806=B*A059260^(-1), where B is the binomial matrix.

Triangle T(n,k), 0<=k<=n, read by rows given by [1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 01 2007

Table T(n,k) read by antidiagonals. T(n,1) = 1, T(n,2) = 1, T(n,k) = 0, k > 2. - Boris Putievskiy, Jan 17 2013

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10010 (Rows 0 <= n <= 140)

Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.

FORMULA

T(n, k) = if(n=k or n-k=1, 1, 0).

a(n) = A103451(n+1). - Philippe Deléham, Oct 16 2007

From Boris Putievskiy, Jan 17 2013: (Start)

a(n) = floor((A002260(n)+2)/(A003056(n)+2)), n > 0.

a(n) = floor((i+2)/(t+2)), n > 0,

where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)

G.f.: (1+x)/(1-x*y). - R. J. Mathar, Aug 11 2015

EXAMPLE

Rows begin {1}, {1,1}, {0,1,1}, {0,0,1,1}...

From Boris Putievskiy, Jan 17 2013: (Start)

The start of the sequence as table:

1..1..0..0..0..0..0...

1..1..0..0..0..0..0...

1..1..0..0..0..0..0...

1..1..0..0..0..0..0...

1..1..0..0..0..0..0...

1..1..0..0..0..0..0...

1..1..0..0..0..0..0...

. . .

The start of the sequence as triangle array read by rows:

1;

1,1;

0,1,1;

0,0,1,1;

0,0,0,1,1;

0,0,0,0,1,1;

0,0,0,0,0,1,1;

0,0,0,0,0,0,1,1;

. . .

Row number r (r>4) contains (r-2) times '0' and 2 times '1'. (End)

MAPLE

A097806 := proc(n, k)

    if k =n or k=n-1 then

        1;

    else

        0;

    end if;

end proc: # R. J. Mathar, Jun 20 2015

MATHEMATICA

Table[Boole[n <= # <= n + 1] & /@ Range[n + 1], {n, 0, 14}] // Flatten (* or *)

Table[Floor[(# + 2)/(n + 2)] & /@ Range[n + 1], {n, 0, 14}] // Flatten (* Michael De Vlieger, Jul 21 2016 *)

CROSSREFS

Sequence in context: A116938 A105589 * A167374 A132971 A085357 A011748

Adjacent sequences:  A097803 A097804 A097805 * A097807 A097808 A097809

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Aug 25 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 09:25 EST 2018. Contains 318219 sequences. (Running on oeis4.)