login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103451
Triangular array T read by rows: T(n, 0) = T(n, n) = 1, T(n, k) = 0 for 0 <= k <= n.
33
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
Equals Pascal's triangle (A007318) where all elements > 1 are replaced with zero. Therefore it might be called "binomial skeleton".
Row sums are in A040000, antidiagonal sums are in A040001. When construed as a lower triangular matrix, the matrix inverse is A103452.
LINKS
Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.
Atli Fannar Franklín, Pattern avoidance enumerated by inversions, arXiv:2410.07467 [math.CO], 2024. See pp. 2, 18.
Atli Fannar Franklín, Anders Claesson, Christian Bean, Henning Úlfarsson, and Jay Pantone, Restricted Permutations Enumerated by Inversions, arXiv:2406.16403 [cs.DM], 2024. See p. 5.
FORMULA
a(n) = A097806(n-1) for n > 0. - Philippe Deléham, Oct 16 2007
T(n,k) = C(n,k-n) + C(n,-k) - C(0,n+k), 0 <= k <= n. - Eric Werley, Jul 01 2011
From Stefano Spezia, Jul 04 2024: (Start)
G.f.: (1 - x^2*y)/((1 - x)*(1 - x*y)).
E.g.f.: BesselI(0, 2*sqrt(x*y)) + exp(x) - 1. (End)
EXAMPLE
First few rows are:
1;
1, 1;
1, 0, 1;
1, 0, 0, 1;
1, 0, 0, 0, 1;
1, 0, 0, 0, 0, 1;
...
MATHEMATICA
Table[Boole[n == 0 || Mod[k, n] == 0], {n, 0, 14}, {k, 0, n}] (* or *)
Table[Binomial[n, k - n] + Binomial[n, -k] - Binomial[0, n + k], {n, 0, 14}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 19 2016 *)
PROG
(Magma) r:=14; T:=ScalarMatrix(r, 1); for n in [1..r] do T[n, 1]:=1; end for; &cat[ [ T[n, k]: k in [1..n] ]: n in [1..r] ];
(Magma) /* As triangle */ [[Binomial(n, k-n)+Binomial(n, -k)-Binomial(0, n+k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 20 2016
(PARI) for(n=0, 15, for(k=0, n, print1(if(k==0||k==n, 1, 0), ", "))) \\ G. C. Greubel, Dec 08 2018
(Sage)
def A103451(n, k): return 1 if (k==0 or k==n) else 0
flatten([[A103451(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Feb 14 2021
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 06 2005
EXTENSIONS
Edited by Klaus Brockhaus, Jan 26 2011
STATUS
approved