login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103453
a(n) = 0^n + 3^n - 1.
3
1, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682, 59048, 177146, 531440, 1594322, 4782968, 14348906, 43046720, 129140162, 387420488, 1162261466, 3486784400, 10460353202, 31381059608, 94143178826, 282429536480, 847288609442
OFFSET
0,2
COMMENTS
A transform of 3^n under the matrix A103452.
a(n) is the number of moves required to solve a Towers of Hanoi puzzle of 3 towers in a line (no direct connection between the two towers on the ends) with n pieces to be moved from one end tower to the other. This is easily proved through demonstration. - Roderick Kimball, Nov 22 2015
LINKS
Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
FORMULA
G.f.: (1 -2*x +3*x^2)/((1-x)*(1-3*x)).
a(n) = Sum_{k=0..n} A103452(n, k)*3^k.
a(n) = Sum_{k=0..n} (2*0^(n-k) - 1)*0^(k*(n-k))*3^k.
From G. C. Greubel, Jun 18 2021: (Start)
E.g.f.: 1 - exp(x) + exp(3*x).
a(n) = [n=0] + 2*A003462(n). (End)
MATHEMATICA
Table[If[n==0, 1, 3^n -1], {n, 0, 30}] (* G. C. Greubel, Jun 18 2021 *)
LinearRecurrence[{4, -3}, {1, 2, 8}, 30] (* Harvey P. Dale, Feb 13 2022 *)
PROG
(Magma) [0^n+3^n-1: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n) = if(n==0, 1, 3^n-1); \\ Altug Alkan, Nov 22 2015
(Sage) [3^n -1 +0^n for n in (0..30)] # G. C. Greubel, Jun 18 2021
CROSSREFS
Cf. A103452.
Essentially identical to A024023.
Sequence in context: A224289 A124721 A279735 * A024023 A295137 A126966
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 06 2005
STATUS
approved